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Abstract

We investigate the maximum number of edges that a graph G can have
if it does not contain a given graph H as a minor (subcontraction). Let

c(H) = inf{c : e(G) > ¢|G| implies G >~ H } .

We define a parameter v(H) of the graph H and show that, if H has t
vertices, then
c(H) = (ay(H) +o(1))t/logt

where v = 0.319 . . . is an explicit constant and o(1) denotes a term tending
to zero as t — oo. The extremal graphs are unions of pseudo-random
graphs.

If H has t'™7 edges then v(H) < /7, equality holding for almost all H
and for all regular H. We show how ~(H) might be evaluated for other
graphs H also, such as complete multi-partite graphs.

1 Introduction

Classical extremal graph theory is concerned with the maximum number of
edges that a graph G can have if it does not contain a given graph H as a
subgraph. The central result is the Erdés-Stone-Simonovits theorem [6], stating
that if

ex(H) = lim inf{c: |G| > n and e(G) > c('i') implies G D H'}
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then ex(H) = 1 — (x(H) — 1)~!, where yx(H) is the chromatic number of H
(in general, we use the standard terminology of [1].) Moreover the extremal
graphs are complete (x(H) — 1)-partite graphs, with perhaps the addition of
o(n?) edges.

In this paper we investigate the corresponding extremal problem where G
is forbidden to have H as a minor, rather than just as a subgraph. We write
G > H to mean that the graph H is a minor, or subcontraction, of the graph
G, in the usual sense; that is, there exist disjoint subsets W,, C V(G) indexed
by u € V(H), such that each G[W,,] is connected and there is an edge of G
between W, and W, whenever wv is an edge of H. The appropriate way to
describe the maximum number of edges in a graph with no H minor is in terms
of the function

c¢(H) = inf{c : e(G) > |G| implies G = H }

introduced by Mader [9] for complete graphs K ; he showed that ¢(K}) is finite,
and of course ¢(H) < ¢(K;) for all graphs H of order ¢. In other words, every
graph of sufficiently large average degree, namely 2¢(H), has an H minor. For
t <7, Mader [10] showed that G = K;_ o+ K,,_;12 is an extremal graph with no
K, minor, but for large ¢ this pattern is far from the truth. Kostochka [8], and
also the second author [16], established the rate of growth of ¢(t) as a function
of ¢, showing in particular that random graphs give good, if not necessarily
optimal, lower bounds.

Only recently has it been shown [18] that random graphs are indeed asymp-
totically optimal, so giving the following asymtotic value for ¢(t):

c(Ky) = (a+o(1)) ty/logt

where o = 0.319086 . . . is explicitly defined. Moreover, the first author [11] has
shown that all extremal graphs are pseudo-random graphs, or, more generally,
essentially disjoint unions of such pseudo-random graphs.

Given that the function ¢(H) is now well understood when H is complete,
it has become feasible to look at its behaviour for more general H, which is
our purpose here. Our hope is to identify some structural property of H that
determines ¢(H), analogously to the way in which the chromatic number x(H)
determines the classical extremal function for H. We already know that if
H = K, then the extremal graphs are pseudo-random. The questions we ask
for general H are therefore these:

(a)  What does the function ¢(H) look like?
(b) Can we describe some structural property of H that determines ¢(H)?
(c) Are the extremal graphs pseudo-random?

These questions would appear to be of increasing complexity but in fact we
answer them in the reverse order to that in which they are posed; it turns out
that we can show the extremal graphs are pseudo-random without inspecting



the structure of H too closely, leaving it till afterwards to decide precisely what
properties of H determine the value of ¢(H).

Even without knowing the value of ¢(H), the fact that the extremal graphs
are pseudo-random means that the situation is quite different from the classical
theory. For one thing, we do not have exact expressions for ¢(H), but only
asymptotic ones as ¢ gets large (here, and throughout the paper, ¢ denotes the
number of vertices of H); the classical theory, on the other hand, gives exact
information about any fixed H (although it may be necessary to require the order
of the graph G containing H to be large). Another consequence of the nature
of the extremal graphs is that the value of ¢(H) is not affected significantly
by the addition of one or two edges to H, because these edges can easily be
found in a random graph; this is in marked contrast to the classical case, where
the addition of a single edge can change the chromatic number and so also the
extremal function.

2 Main results

We now define a parameter v(H) of H that determines ¢(H). A consequence
of the discussion above is that there is some latitude in how ~(H) might be
defined; if 7/ (H) were another parameter with v'(H) = vy(H) + o(1), where o(1)
denotes something tending to zero as t — oo, then +/(H) could be used just as
well as v(H) in all our results. What this means in practice is that we have a
choice of definitions, and different definitions are suited to different parts of the
proofs. The definition given here is chosen because it is relatively clean. It is
more suited to showing that the extremal graphs are pseudo-random than it is
to allowing v(H) to be calculated for a specific H, but once the main theorems
have been proven we devote some time (§4) to the evaluation of v(H).

Definition 2.1 Let H be a graph of order t. We define

1
_ . —w(u)w(v)
v(H) = min E w(u) such that E t W<,
ueH wweE(H)

where the minimum is over all assignments w : V(H) — RT of non-negative
weights to the vertices of H.

Remark. Observe that, roughly speaking, v(H) is the smallest average vertex
weight that is achievable whilst keeping the products of weights across edges
large. Also, by grouping together vertices of similar weight, we could think of
~v(H) as a partition function of some kind.

Remark. If H has t'77 edges then we can take w(u) = /7 for all u € H, and
so v(H) < /7. In particular, v(H) < 1 for every graph H.

Remark. We shall show in §4 that v(H) = /7 + o(1) for almost all graphs
H with t'77 edges and for all regular graphs with t!*7 edges. Indeed, in order
for v(H) to be strictly smaller than /7 it is necessary for H to have a very



restrictive structural property that we call having a tail. Note in particular that
~v(H) = 14 0(1) for almost all graphs H and for all regular graphs H of positive
density.

We now state how ¢(H) depends on y(H ). The expression involves a constant
a defined by a = (1 — A)/24/log(1/)\), where A < 1 is the root of the equation
1 — X+ 2Xlog A = 0. Numerically, A = 0.284668 ... and a = 0.319086. . ..

Theorem 2.2 Let H be a graph of order t. Then

c(H) = (ay(H) + o(1)) t+/logt

where o = 0.319086 ... and the o(1) term denotes a quantity tending to zero as
t — oo.

Remark. It follows from the previous remark that ¢(H) = (1 + o(1))c(K%) for
almost all H, so most graphs are essentially no easier to find as a minor than is
a complete graph of the same order. In this respect the situation here is quite
different from the classical theory.

Though Theorem 2.2 answers our initial question about the value of ¢(H),
our main theorems are really the following two, from which Theorem 2.2 is
derived and which show that random graphs provide extremal graphs for ¢(H).
We use the simplest model of random graphs, in which G(n, p) denotes a graph
with n labelled vertices, its edges being chosen independently at random, each
with probability p.

Theorem 2.3 Given € > 0 there exists T = T(€) with the following property.
Let H be a graph with t > T wvertices and with v(H) > ¢e. Let e <p <1 —,
let q=1—p andletn < |y(H)t,/log,,,t]. Then H is a minor of a random

graph G(n,p — €) with probability less than e.
The next definition is self-explanatory but we state it nonetheless.
Definition 2.4 The density of the graph G of order n is the ratio |E(G)|/(3).

Much of the work in the paper is devoted to proving the next theorem, which
is the central one.

Theorem 2.5 Given € > 0 there exists T = T(¢) with the following property.
Let H be a graph with t > T wvertices and with v(H) > e. Let e <p <1 —,

let g =1—p and let n > [y(H)t,/log,,,t]. Let G be a graph of order n,

density p + € and connectivity k(G) > n(logloglogn)/(loglogn). Then H is a
minor of G.

Remark. Theorems 2.3 and 2.5 show that the threshold probability p at which
an H minor appears in G(n,p) is the threshold density at which H minors



appear in every reasonably connected graph of density p. This fact is at the
heart of why Theorem 2.2 is true.

The remainder of the paper proceeds in the following way. In the next
section we give the proofs of the main theorems. We then consider how the
parameter y(H) can be evaluated, or estimated, for particular graphs. Finally
we discuss briefly some related matters: in §5 the extremal graphs for ¢(H) are
described; in §6 the extremal problem for a set of graphs H, rather than just a
single graph, is examined; and in §7 we discuss what might happen when H is
very sparse or very asymmetric, and the main theorems do not apply.

3 Proofs of the main results

In this section we give the proofs of the theorems described above.

3.1 The proof of Theorem 2.3

Bollobéds, Catlin and Erdds [3] investigated the largest value of ¢ for which K
is almost certainly a minor of G(n,p). The part of the argument showing that
K is not a minor of G(n,p) for large ¢ is straightforward, and a modification of
it gives Theorem 2.3. First we state a very simple lemma.

Lemma 3.1 Let 0 < e <z <1—e¢. Then \/(log(z +¢))/logz <1—e.

Proof. We must show that f(z,¢) = (1 — €)?logz — log(z +€) < 0 for 0 <
e < x < 1-—c¢€ Now the partial derivative of f with respect to x satisfies
fo(z,€) = €[(1—€)?—(2—¢€)x]/z(x+¢€), which is positive or negative according as
T < mg or T > xg, where xg(€) = (1—€)?/(2—e¢). It might be that 29 < € but even
so, for fixed €, the maximum value of f(x, €) as x varies is at most f(xg, €), and so
it suffices to show that g(e) = f(zo,€) = 2(1—¢€)?log(1—¢€)+e(2—¢)log(2—¢) < 0
for 0 < e <1/2. The second and third derivatives of g(e) are g"” = 4log(1 —¢) —
2log(2—€)+3+2/(2—¢) and " = —2(e2 —4e+5)/(1—¢€)(2—¢€)% Thus g <0
and so ¢”(e) > ¢”(1/2) > 0 for e < 1/2. Consequently the maximum value of
g(e) for 0 < e < 1/2is max{g(0),¢g(1/2)} = 0. This completes the proof. [

Proof of Theorem 2.3. We shall derive a contradiction from the assumption
that the probability is at least € of H being a minor of G(n,p). Now there are
at most t" partitions of the vertex set of G(n,p) into ¢ parts W,,, u € V(H), and
subject to our assumption there is some partition for which the probability is
at least et~™ of there being an edge between W,, and W, whenever uwv € E(H).
Fix such a partition. Then, putting g. = q + €, we have

e < ] (1—qLWu”Wv‘)geXp(_ 3 qlwunwuw)’

wv€EE(H) wv€EE(H)
S0
1 t 1
Z gWellWel < nlogt—i—log; < E(logt)B/z—Hogz < t(logt)?
wveEE(H)



if ¢ is large compared to e.
Let w(u) = 0 + |[Wy|(logy /4, t)~1/2 where § = €2/2. Then

Z t—w(u)w(v) < Z t—équWu,HWA < t—52t(10gt)2 <t
wwEE(H) w€EE(H)

if ¢ is large compared to €. Moreover, since ) . [Wy| = n, we have

1 W [log ge
u€H uet Uy /10gy/q ¢

by Lemma 3.1, and because (H) > e this means (1/t) >, oy w(u) < y(H) — 0.
The weighting w thus provides a contradiction to the definition of v(H) and so
completes the proof. 0

3.2 The proof of Theorem 2.5

The main work of the paper is to prove the obverse to Theorem 2.3, namely
Theorem 2.5. Before we begin that work, though, we need some preparatory
results. The first is a simple Chernoff-type bound on the tails of the binomial
and hypergeometric distributions (see for example [2]).

Lemma 3.2 Let X be a random variable, distributed either binomially with
parameters (n,p) or hypergeometrically with parameters (n, N,pN). Then, for
0<e<l,

Pr{|X —np| >enp} < 2exp(—€e*np/4).

The next two very simple lemmas are taken from [18].

Lemma 3.3 ([18, Lemma 4.1]) Given a bipartite graph with vertex classes A
and B, wherein each vertex of A has at least 6| B| neighbours in B (§ > 0), then
there exists a set M C B such that every vertex in A has a neighbour in M,
and |M| < log, ;_g) |A]] + 1.

Lemma 3.4 ([18, Lemma 4.2]) Let G be a connected graph and let u, v €
V(G). Then u and v are joined in G by at least k*(Q)/4|G| internally disjoint
paths of length at most 2|G|/k(G).

Using these lemmas we can show that, when looking for an H minor in a
graph, the connectivity of the parts G[W,] can easily be taken care of. The
lemma and its proof are adapted from [18, Theorem 4.1].

Lemma 3.5 There is a number T with the following property. Let t > T.
Let G be a graph of order n > t(logt)'/* whose connectivity x(G) is at least
n(logloglogn)/(loglogn). Then G contains a set C' with |C| < n/logloglogn
having the property that, for any partition W;, 1 < i <t, of V(G) — C there are
subsets W/, 1 <i <t of C with GIW; UW/] connected, 1 <1i <t.

(2



Proof. Let k = (loglogn)/(logloglogn), so (G) > n/k. By Lemma 3.4 we
can find, for each pair u, v of vertices of G, a set Q(u,v) of at least n/4k?
internally disjoint u—v paths of length at most 2k.

Let r = 4logloglogn and choose a subset C; C V(G) by selecting vertices
independently at random with probability 1/r. Then |C1| < 2n/r holds with
probability greater than 1/2. Given two vertices u, v of G, the probability
that the internal vertices of a path in Q(u,v) all lie in C; is at least r—2F,
and these probabilities are independent for the different paths. By Lemma 3.2,
the probability of fewer than n/8k%r?* paths lying entirely within C; is at
most 2 exp(—n/64k%*r?*) < n=3 if ¢ is sufficiently large (which from now on we
assume without comment). So the probability that this happens for some pair
u, v is less than 1/n. Similarly, since every vertex has degree at least k(G), the
probability that some vertex has more than half its neighbours inside C is at
most 2n exp(—#/16r) < 1/n. So there is some choice of Cy with |C1| < 2n/r,
such that for every pair u, v of vertices there are at least n/8k%r?* u—v paths
whose internal vertices are disjoint and lie within C7, and moreover C contains
no more than half the neighbours of any vertex. Make such a choice and fix it.

Now choose within V(G) — C7 another subset Cs, again picking vertices
with probability 1/r, so that |Ca| < 2n/r with probability more than 1/2. Each
vertex v € G has at least k(G)/2 > n/2k neighbours in V(G)—C4, and, similarly
to hefore, the probability that some vertex has less than n/4kr neighbours in
C5 is less than 1/2. So there is a choice of Cy that contains at least n/4kr
neighbours of every vertex, with |C2| < 2n/r. Make such a choice and fix it.

Let C = C7 U Cy. We shall show that C has the property claimed in the
lemma. Clearly |C| < 4n/r = n/logloglogn. Let n = tI, where [ > (logn)/®,
and let W;, 1 <i <, be a partition of V(G) — C. We first find disjoint subsets
M; C Cs so that every vertex in W; has a neighbour in M; and such that
|M;| < 8krlog|W;| + 1; to see that this can be done, observe that if we have
so far found M;, ..., M; then, because of the concavity of the log function, we
have

J t t
SOIM| <Y M| < t+8kr Y log|Wi| < t+8krtlogl < n/8kr,

i=1 i=1 =1

so every vertex of Wj 1 has at least n/8kr neighbours in Co — My — ... — M;,
and we can find M;; by applying Lemma 3.3 with A = W1, B = Cy — M; —
...—M; and § = 1/8kr.

Finally, for each ¢, 1 <1 < ¢, pick u; € M; and, for each v € M; — {u;}, find
a u;—v path of length at most 2k whose internal vertices lie inside Cy. Let N; be
the collection of the internal vertices of the u;—v paths. To see that the sets IN;
can be chosen disjointly, notice that to begin with there are at least n/8k?r2"
suitable and disjoint choices for the u;—v path, and that the number of these
paths intersecting any previously chosen paths is less than

t
2k (IM;| — 1) < 2k(8krtlogl) < n/8k*r*",

=1



so we can always pick a path that meets none of the previous paths.

Hence we obtain disjoint sets W/ = (M; UN;) C C, 1 < i < ¢, such that
G[W]] is connected and every vertex of W; has a neighbour in W/. This means
that G[W; U W/] is connected, as claimed. a

3
Now we are ready to do the main work of the paper.

Proof of Theorem 2.5. We shall assume throughout that ¢ is sufficiently
large (in terms of €) for the various assertions that we make to be true.

By the definition of v(H) we may take a weighting w of H with v(H) =
(1/t) > pegw(u) and 2, cppy t—wWw®) < ¢ We shall find the sets W, that
we need for the minor by choosing them randomly, such that |WW,,| is proportional
to w(u). The difficulty with this approach is that there will not always be an
edge between W,, and W,, whenever uv € E(H). However, by arguing carefully
(as we describe later) it can be shown that the “missing” edges are incident with
few vertices, say fewer than Gt where (8 is some small constant. So, if instead
of looking for an H minor we look in the first place for an H + Kg; minor, we
shall find an H 4 Kg; minor with fewer than 8¢ vertices missing, and so we shall
have our H minor.

Let 8 = ¢€*/32 and let J = H + Kg. First, remove from G a set C of size
at most n/logloglogn as given by Lemma 3.5. It will be convenient to add a
few vertices to C' until |V(G) — C| is a multiple of m = | (logt)'/®]; this can be
done so that |C| < 2n/logloglogn, and of course C' still retains the properties
asserted by Lemma 3.5.

Now let

Z ={uecV(H) : w) +ey(H)/4>8/}.

Put g = q¢ — ¢/2 and for each u € J let

) [(wlw) + ex()/4) flogy 0 ¢ | it we Vi) - 2

[(8/62) N ] ifueZUV(Kg).

Observe that, since v(H) > ¢, there are constants ¢; and co depending only
on ¢, such that c¢1v/logt < l(u) < cav/logt for each u € J; we abbreviate this to
l(u) = O.(+/1ogt). Moreover, using v(H) > € and Lemma 3.1 with z = ¢, we

obtain
;l(w {;{(w(u)ﬁv(m) +ﬁ§2t} V/1081/q, + 1]

(I+¢/2)y(H)t logy /g, t + (1+ )t

< (1+€/2)(1 —€/2)y(H)t/logy ot + (1 + B)t

< n—|C|.

IN

IA

It is therefore possible to choose disjoint sets W,, C V(G) — C with |W,| = l(u)
for each u € J. Let such a choice be made at random.



Given a vertex z € V(G) — C let

Qe) ={yeV(G)-C:ay¢ EG)} and q(x) =[Q@)|/(n—|C]);

note that z € Q(z). For a subset S C V(G) — C we write Q(S) = NyesQ(y),
so z € Q(9) if and only if S C Q(x). Then the average value of ¢(x) satisfies

1 1
—Te Y oqlz) = =02 > Q@)

TEV(G)—C 2EV(G)—C
L
(n O]

5
— 14— < q..
(g 6)< +1og10glogt> =4

n—|Cl+ (g —e)n(n—1))

IA

Now label the set
V(G) - C = {x1,...,2,_|c} where g(z;) increases with i.

There are many sets W,,, each small, and some of the choices will almost in-
evitably be poor. The choices that work turn out to be those where both W
and Q(W) are well-distributed through the ordered set V(G)— C. To make this
precise, split the vertices of V(G) — C into m consecutive blocks Bj, 1 < j < m,
each of size b = (n — |C|)/m; so

We also define ¢; = max{q(z) : € B;} = q(x;,). We now say that a set W is
good if

both (a) W N Bj| > |W|/m— (logt)"/3

and  (b) QW) N B;| < (logt)bg)""

hold for all j,1 <j <m.

Let us check that most sets W,,, u € J, are good. Firstly, by Lemma 3.2,
the probability that |W, N B;| < I(u)/m — (logt)/? for some given j is at most
exp{—(logt)'/*} < B/4m since l(u) = O.(v/Togt), so the probability that W,
fails condition (a) of goodness is at most 3/4. Secondly, if = € B; then

o~ () () (25 - <

so the expected size of |Q(W,) N Bj| is at most bql-(“). Hence the probability
that |Q(W,)NBj| exceeds (logt) bqj-(“) is at most 1/logt, and so the probability
of W, failing condition (b) of goodness is at most m/logt < 3/4. We conclude
that W, fails to be good with probability at most 3/2.

We now need to check that the probability of there being no edge between
W, and W, is not much worse than what it would be in a random graph, namely




¢" W ) provided both W, and W, are good. Let P(u,v) be the probability
that there is no W,~W, edge conditional on W, satisfying condition (a) and
W, satisfying condition (b). Now there is an edge between W,, and W, unless
W, N Bj is contained in Q(W,) N B; for 1 < j < m. Let P'(u,v) be the
corresponding conditional probability in the experiment where W, and W, are
chosen independently (not necessarily disjointly); then P(u,v) < P’(u,v)/Pq4
where Py is the probability that W, and W, are disjoint. Note that

= ()  (Pete) <

Given that W, satisfies condition (a), choose at random a set A; C W,, N B; of
size k = I(u)/m — (logt)'/3; then the sets A; are uniformly distributed in B;,
and W, N B; is contained in Q(W,) N B; only if A; C Q(W,) N B;. Ignoring
the constraint imposed here when j = m, we thus have

P(u,v) < P'(u,0) P!

m—1 -1 m—1 k
- |Q(Wy) N Bj[\ (b - |Q(W.) N By
() T ()

kl(v)

m—1
< 2(logt)™! H 4 since W, satisfies condition (b)
j=1
1 (m—1)kl(v)
1 m
< (logt)™ (m ; 4 by the AM-GM inequality
—rel (m—1)kl(v)
< (logt)™ 1 Z (x;) as ¢() is monotone
= g b(m — 1) — q\T; q
_c (m—1)kl(v)
< (logt)™ < H qe) by our earlier estimate
(m—1)kl(v)
m
—  (logt)™ .
(o)™ (- 0.
o (@)= Cog )/ #)iw)
< (logt)™ < 1 qe) as l(u), l(v) = ©(/logt)
< P gl Wiw) asm = [(logt)'/®] and I(u), [(v) = O.(v/Togt)

It follows from this that if both v and v are in V(H) — Z then P(u,v) <
A ww©)=<*/16 < (g /4)t=w(Ww®) whereas otherwise, since min{l(u), [(v)} >

(€2/4) | [logy /4. t, we have P(u,v) < t8t=2 < (B/5)t~1. Therefore the expected

10



number of edges uv € E(J), for which both W,, and W, are good but there is
no W,—W, edge, is at most

Z P(u,v) < Z gt*w(“)w(”) + (1+6)2 t2§t71 < gt-

ww€E(J) : u,v good uwveEH

Consequently there exist sets Wy, u € V(J), for which W,, is good for all
but 8t/2 vertices u, and amongst the pairs of vertices for which both W,, and
W, are good there is a W,~W, edge in G whenever uwv € E(J) except in [t/2
cases. Remove from V(J) the vertices u for which W, is not good or for which
some edge uv is not represented by a W,~W,, edge. Since J = H 4 Kpg; and at
most Ot vertices were removed, the remaining graph contains a copy of H.

Therefore V(G) — C contains subsets W,,, u € V(H), such that G has a
W.—W, edge whenever uv € E(H). Finally, by Lemma 3.5, we can find disjoint
subsets W, C C such that G[W,, UW}] is connected — in other words, G has
an H minor. 0

Remark. The statement and proof of Theorem 2.5 involve only fixed values
of e, with t being sufficiently large. It is possible to pursue the proof when
both v(H) and € are functions of ¢ that tend to zero as ¢ — oo, but not too
quickly. One of the principal constraints arises from the removal of the set C' of
size n/logloglogn, which perturbs the value of ¢. We could improve matters
by noticing that C' was chosen randomly in the proof of Lemma 3.5, and so
its removal would not perturb ¢ too much. But the need to use Lemma 3.5, or
some version of it, nevertheless means that «(H) can tend to zero only extremely
slowly, and so we prefer, to avoid further complication, to give Theorem 2.5 only
in the form stated.

3.3 The proof of Theorem 2.2

The arguments needed to derive Theorem 2.2 from Theorems 2.3 and 2.5 are
almost identical to those used in the case H = K, and can be taken almost
verbatim from [18]. We therefore give just an outline, indicating those points
at which the constants need to be changed slightly.

Theorem 2.2 is equivalent to the following statement: given § > 0, there
exists T = T'(d), such that if |H| = ¢ > T then (ay(H) — §)ty/logt < ¢(H) <
(ay(H)+0)ty/Togt. The lower bound follows at once if v(H) < d, and otherwise
it follows by applying Theorem 2.3 with p = 1 — X (as defined in §2) to obtain
a graph with no H minor and (almost certainly) average degree at least (1 —

6)(1 = A)y(H)t,/logy nt =2(1 — 6)ay(H)ty/logt.

To get the upper bound we must show that any graph with d|G| edges
contains an H minor, where d = |(ay(H) + §)ty/logt]|. We may assume that
~(H) > 6 (if not, add edges to H until this holds). Putting k = [d/logloglogd],
we define the class of graphs £q 1 by

i = {G : |G| >dand e(G) >d|G| —kd } .
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It suffices then to show that, if G is in £z but no minor of G is, then G has
an H minor. Such a graph G has the properties that e(G) = d|G| — kd + 1,
d+1 < 6(G) <2d—1, every edge of G lies in at least d triangles, and x(G) > k;
the simple verification of this can be found in [18, §2].

At this point we split the proof into two cases according to whether or not
|G| > cd, where ¢ = ¢(d) is a constant given by Proposition 3.7 below. This
proposition is itself based on small preliminary proposition about minors in
bipartite graphs. The case of the preliminary proposition where § = 3/10 and
¢ =400 is Lemma 5.1 of [18]; the same proof works for any values of § and (.

Proposition 3.6 Given § > 0 and ( > 0 there exist constants to and C with
the following property. Let t > to and let d > 6ty/logt. Let G be a bipartite
graph with vertex classes A and B, such that |A| > Cd, |B| < (d and every
vertex of A is incident with at least d/3 edges. Then G = Ko.

Proposition 3.7 Given 6 > 0, there are constants ¢ = ¢(0) and T = T(J) such
that the following holds.

Let t > T be an integer and let d > §t\/logt. Let G be a graph with |G| > cd
and k(G) > tloglogt. Suppose that e(G) < d|G| and that there are at least d
triangles on every edge of G. Then G = Ko;.

Proof. (Sketch only.) The proof of the proposition is almost the same as
that of [18, Theorem 5.1], except that there the bound on d is d > (3/10)t+/log ¢
and the bound on & is the weaker x(G) > 23t. The argument given in [18] is
roughly this. We aim first to find 67 = 1 + (122) disjoint K;/3 minors. Suppose
we have so far found some of them. Since the average degree of G is at most
2d we can find lots of vertices of degree at most 3d. If lots of these have more
than d/3 neighbours amongst the previously chosen K 3 minors, we get a dense
bipartite graph, which by [18, Lemma 5.1] has a Ko minor (here we need ¢ to
be large, so that the lemma can be applied). Otherwise, we find a vertex of
degree at most 3d with at most d/3 neighbours in the previously chosen minors,
and since each edge of G lies in d triangles, the part of the neighbourhood lying
outside the previous minors is sufficiently dense to provide a further K;, 3 minor
(by Theorem 2.5). Hence we obtain our 67 K;/3 minors. We now arrange the
parts of 66 of the K;,3 minors into 2¢ groups of 11, in such a way that, given
any two groups, there is some K, 3 minor from which they both have a part,
and hence there is some edge between the two groups. To get our Ko minor,
all we have to do now is to find paths internally linking each group so that the
11 parts in the group form a connected subgraph. These paths can easily be
found by taking a path from each of the 22¢ parts to the remaining K;,3 minor
that we didn’t use yet, and using this minor as a router to connect the ends of
the paths in the way we want.

To prove the present proposition, all that is needed is an adjustment to the
constants. Because the constant 3/10 of [18, Theorem 5.1] has been replaced
by & we can no longer find K;/3 minors but only Kg; minors for some constant

B = B(5). This means that we must look for 1 + (2[12/61) of these minors. The
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argument then proceeds much as before. Proposition 3.6 is applied instead of
Lemma 5.1 of [18], and instead of { = 400 we take { = 6 x (2[12/m). The
value of ¢ needed is then proportional to the C required by Proposition 3.6. As
before, we either find a Ko; minor at once or we keep finding small dense subsets
yielding fresh Kg; minors. The argument that uses one of the small minors and
the large connectivity to link the other small minors to form a Ks; minor needs
barely any adjustment, and in fact the higher connectivity in the present case
simplifies some of the estimates.

These remarks should suffice to guide the keen reader wishing to fill in the
details of the proof; the less determined but nevertheless interested reader can
find the details in [13]. N

Resuming the proof of the upper bound for Theorem 2.2, we see that if our
minimal graph G satisfies |G| > cd then it satisfies the conditions of Proposi-
tion 3.7, so G > Ko and we are done. Otherwise, put € = min(J, 1/¢) so that
the density of G is p = e(G)/(lgl) ~ 2d/|G| > 2¢. Then we have

2d 2d 2a
~N—_— = > -
|G| ) ¢~ (1+5)1_q log(1/q)v(H)t/logy 4t

and, since the maximum value of the expression (1 — ¢q)/2+/log(1/q) is o (when
q = A), it follows that |G| > (v(H) + €)t,/log; ;,t. Theorem 2.5 then tells us
that G > H.

4 Estimating v(H)

We now address the question of how to compute, or to estimate, the parameter
v(H).

4.1 Exact evaluation

It appears to be difficult in general to evaluate v(H) exactly. In the case when
H is regular it seems likely that the optimal weighting is uniformly distributed
on the vertices, but we cannot prove this; in fact, we can evaluate v(H) exactly
only when H is complete or complete bipartite. When H = K, it is easily
checked that an optimal weighting gives the same weight to each vertex, from
which it follows that (;)t’Vg(Kf) =t,s0 v(K) =1—0(1/logt).

In general a couple of simple observations might be made. First, note that
if H' is a spanning subgraph of H then v(H') < ~(H), since a weighting that
is acceptable for H is acceptable also for H’.

A second observation is that, if u and v are non-adjacent and have the same
neighbours, then (by the AM-GM inequality) the quantity ZMGE(H) t—www(v)
is not increased if we assign weight (w(u) + w(v))/2 to each of w and v. In
other words, in an optimal weighting, non-adjacent vertices having the same
neighbours receive the same weight. So, for example, when H = Kpg; (1) an
optimal weighting has only two distinct weights w; and ws, such that Sw; + (1 —
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B)wz = v(H) and B(1—B3)t?t~*1%2 = t. The optimum is fw; = (1—B)w2, giving
B(1L = Byt IH/AB0=0) =1 50 Y(Kppe,1-p9) = 2¢/B(L = B) + O (1/ logt).

4.2 Shapes

Since we cannot evaluate v(H) exactly we try to approximate it, and for this
purpose the next definition will be useful.

Definition 4.1 A shape is a pair (F, f), where F is a graph (in which loops, but
not multiple edges, are allowed) and f : V(F) — RY is a function assigning non-
negative numbers to the vertices such that 3 ,cy ) f(a) = 1. The parameter
m(F, f) is given by

m(F, f) = e min z(a)x(b) .

Here the mazimum is over all functions x € [0,00)V(F) of V(F), and x- f stands
for the standard inner product ), x(a)f(a).

Remark. Notice that this definition allows z(a) > 1 even though we always
have f(a) < 1. Notice too that the constant function z(a) = 1 satisfies x- f =1
and so m(F, f) > 1. Also, if F consists of a single vertex a with a loop then
f(a) =1 and m(F, f) = 1.

We shall approximate y(H) by means of small shapes. On the face of it,
this appears to be just substituting one weighted graph problem for another.
But it turns out that we can restrict our attention to a small identifiable class
of shapes, and for these shapes we can evaluate m(F, f). Before developing this
remark, though, we explain how v(H) can be estimated in terms of shapes.

Definition 4.2 The graph H of order t is an e-fit to shape (F, f) if there is a
partition of V(H) into sets V,, a € V(F'), such that |V,| = f(a)t, and

Huve E(H) :ueV,,veV,and ab¢ E(F)}| < t~°|E(H)]|.

So H is an efit to (F, f) if there is a partition of H into classes indexed by
V(F) and of sizes proportional to f, so that all but a tiny fraction of the edges
of H lie between classes corresponding to edges of F. The fact that F might
have loops allows H to have edges within the corresponding classes.

The relevance of shapes to the calculation of v(H) can now be made explicit.

Theorem 4.3 Let € > 0 and let H be a graph of order t with t'*7 edges. Then
H is an e-fit to some shape (F, f) with

\/F
and —_— — €.
v(H) > NI 4y/e

|F| <

a =
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Proof. The shape with one vertex satisfies the demands of the lemma if € >
1/16, so may assume € < 1/16. Let 6 = 24/¢ and let w be a weighting of H
satisfying (1/t) >_,c g w(v) =y(H) and 3=, c p(m) t~wWw) <t Define a new
weighting w’ of H by

W () = { w(u) + 6 if |H| <1/e
| min{w(u)+46,3/6} if |H|>1/e.

Then if |[H| < 1/e we have

Z tfw'(u)w'(v) < Z tfw(u)w(v)752 < t17(52 < e

weE(H) w€eE(H)
whereas, since w'(u)w’(v) > 3 whenever w’(u) = 3/4, if |[H| > 1/¢ we have

Z t—u/(u)w’(v) < Z t—w(u)w(v)—62+t1+7t—3 < t1—4e_|_t—1 < tl_E.
wv€EE(H) weE(H)

For each integer i let
A = {uEH C(149) < w'(u) < (1—}—5)”1}

so the A; form a partition of V(H).

We define a shape (F, f) in the following way. Let the vertices of the graph F'
be V(F) ={A4; : A; # 0}. Certainly |F| < 1/eif |H| < 1/e. On the other hand,
if |[H| > 1/e then § < w'(u) < 3/6 for allu € H so A; =0 for i +1 < log; 56
or i > log;,5(3/6). So in this case |F| < 2 4 logy 56 + log,,5(3/0) < 1/e
also. Let f(4;) = [Ail/t, 50 X ey (py f(a) = (1/1) X4, 9 |Ail = 1. Finally, for
a=A; € V(F) put y(a) = (14 §)'*%. Then the edges of F are defined by

E(F)={ab:acF,beF and y(a)y(b)>71}.

First we check that H is an e-fit to (F, f). The partition V,, a € F that we
use is of course V, = a = A;, where by definition |V,| = |4;| = f(a)t. Let E
be the set of edges uv € E(H) that do not correspond to edges of F'; that is, if
uv € E then there exist a = A; and b = A; in V(F') with v € 4;, v € A; and
ab ¢ E(F). This means that w'(u)w'(v) < (14 8)F(1 +0) ! = y(a)y(b) < T,

SO
|E|t77' < Z tfw'(u)w'(v) < Z tfw'(u)w'(v) < tlfe
wEE wweE(H)
giving |E| < t1777¢ = t=¢|E(H)|, as needed.
What remains is to verify the bound on y(H) claimed in the theorem. Writ-
ing s =), cp f(a)y(a) we have

1+

= LA < S ) < S Y i +9)
A, 20 weH ueH
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giving s < (1 +0)(v(H) + 0). Let z(a) = y(a)/s; then we have
v f =3 H@ale) = (1/5) 3 Flayy(@) = 1.
a€F aEF

Thus the definition of m/(F, f) implies minye g(ry v(a)x(b) < m(F, f). But the
definition of E(F) implies mingpe p(py 2(a)z(b) = (1/5%) mingeg(ry y(a)y(b) >
7/s2, and so

\/F

Vm(Ff)’

(14 0)(y(H) +6) > s >

from which we obtain

1 VT VT VT
H > ——~FX ___ —§§>(1-)——m—es 0> ———— — 2§
WeErn men 2N mEn ' e
which is the result claimed. [

4.3 Critical shapes and half-graphs

We make use of Theorem 4.3 to obtain a lower bound on v(H) in the following
way. We know y(H) < /7. Suppose we wish to show v(H) > \/7/m for some
m > 1. Given € > 0 there is a bounded number of graphs F with |F| < 1/e;
if we can show that, whenever an f can be assigned to such an F so that H is
an e-fit to (F, f), then m(F, f) < m, we will have shown y(H) > /7/m — 4+/e,
which is more or less what we wanted.

Observe that, if H is an e-fit to (F, f) then it is also an e-fit to any shape
(F', f") where F’ is obtained from F either by the addition of an edge or by the
merger of two vertices of F' ; by the merger of a,b € F' we mean the replacement
of a and b by a single vertex c joined to every vertex previously joined to either
a or b (including a loop at ¢ if F' had an edge with both ends in {a,b}), with
f'(c) = f(a) + f(b) and f' = f on the other vertices of F”.

Definition 4.4 A shape (F, f) is said to be critical if the addition of any edge
to F' or the merger of any two vertices decreases the value of m(F, f).

Let us summarize the discussion above.

Corollary 4.5 Let H be a graph of order t with t'*7 edges. Let € > 0 and let
m be the mazimum value of m(F, f) over critical shapes (F, f) with |F| < 1/e
to which H is an e-fit. Then v(H) > \/7/m — 4,/e.

What makes this corollary useful is that there are very few critical shapes,
and we can describe them exactly.
Remark. It should be pointed out, however, that the corollary can sometimes
give a bound much less than the correct value of y(H). For example, consider
when H is the union of K /g 7;/3 and a t'/2_regular graph H* on the same vertex
set. As shown earlier, v(K; /s 71/8) = V7/4+ 0(1), and as shown later in §4.4,
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Y(H*) = 1/v/2 + o(1). Thus y(H) > max(\v/7/4,1/v/2) +o(1) = 1/v2 + o(1).
But, for every € > 0, if ¢ is large this graph is an e-fit to a two vertex shape with
f=(1/8,7/8) and m(F, f) = 16/7 (see the next theorem). So Corollary 4.5
gives only y(H) > v/7/4 4 o(1).

In other words, Corollary 4.5 is blind to the presence of the very sparse
subgraph H*, though this subgraph is what is determining the actual value
of v(H). This situation is, of course, analogous to the situation in the classical
extremal theory, where the chromatic number of H is governed by x(H*) and
not just by the chromatic number of a dense subgraph.

Critical shapes are described precisely by the next theorem.

Theorem 4.6 A shape (F, f) with |F| = k+1 is critical if and only if F is the
half-graph of order k 4+ 1 that is,

V(F)=1{0,1,....k} and E(F)={ij:i+j>k},
and moreover [ satisfies

fR) _ f=1) _ fk—[(k=1)/2])

< < < 1.

f(0) f() f(L(k—=1)/2])
For these shapes,

k

-2
m(F, f) = {Z \/f(i)f(k—i)} .

1=0

Proof. First suppose that (F, f) is critical, and that x is such that - f =1
and m(F, f) = mingepr)z(a)z(b). Say that an edge ab of F is critical if
xz(a)x(b) = m(F, f).

Every vertex must be adjacent to a critical edge; for if a were not, then
x(a) could be slightly decreased and x(b) slightly increased for all vertices b # a
to keep x- f = 1, and so m(F, f) would increase. No distinct vertices a and b can
have z(a) = x(b), for such vertices could be merged without affecting m(F, f).
This means that every vertex is adjacent to exactly one critical edge (for, if
ab and ac were critical, we would have z(b) = x(c)), and that there is at most
one critical loop (for, if aa and bb were critical, we would have x(a) = x(b)). So
the critical edges form a perfect matching (plus a loop if |F| is odd).

Each critical edge ab must have one endpoint a with x(a) < /m(F, f), and
the other b with xz(b) > /m(F, f), except that a critical loop aa must have
xz(a) = v/m(F, f). Let V(F) = {0,1,...,k} and let 0,1,...,|(k — 1)/2] be
the vertices with z(i) < \/m(F, f), in increasing order of x(7). Let k/2 be the
vertex of the critical loop, if k is even. Let ¢ and k — ¢ be the endpoints of a
critical edge, for 0 < i < |(k —1)/2]. Since x(k — i)x(i) = m(F, f), it follows
that z(0) < z(v1) < --- < x(k). Criticality of (F, f) means that each i has as
neighbours exactly those j for which z(i)z(j) > m(F, f); that is, i +j > k.
Thus F' is the half-graph as described.
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We can now evaluate m(F, f). Since ij is a critical edge, where j = k — i,
we have m(F, ) = z())x(j) = f()x(@) f()=(5)/f(@)f(5). I we hold x(a) fixed
for all a # i, j, then z(i) and z(j) may be varied such that f(¢)z(i) + f(j5)z(j)
remains constant. If f(i)x(i) # f(j)z(j), we can make a slight variation so
that f(i)z(i)f(j)z(j) increases without any new critical edges being created;
but now there is no critical edge at ¢ or j, contradicting the fact that every
vertex is adjacent to a critical edge (else m(F, f) could be increased). Therefore
f@)x(i) = f(j)x(j). This means that

= V(i) = Vm(F, f)f (i) f(j)

so x(i \/ m(F, f)f(5)/f(i). The condition the theorem gives on the values of

f

() now follows from z(0) < z(1) < --- < z(|(k—1)/2]) < /m(F, f). Moreover,
since l =z f = Zf:o x(7)

theorem.

Conversely, suppose now that (F, f) has the described form. We need to
show that (F, f) is critical. First, we show that there is a unique function x on
V(F) such that m(F, f) = min;jep(p) z(i)z(j). For take any z satisfying this
equation. As argued at the start of the proof, each vertex must be incident with
a critical edge. Now if ¢ < j then every neighbour of ¢ is also a neighbour of j,
and since 4 is incident with a critical edge it must be that z(j) > x(i). Thus z()
is increasing, and so i(k — ¢) must be a critical edge for each 4. In particular, if
k is even, then x(k/2) = \/m(F, f). Moreover, if (i) = z(i+1) then z(k —1) =
x(k—z—l) and so z(i) = —x(z—i—l) and x(k—i)=---=z(k—i-1).

If z() is not strictly increasing there are two vertices i < j < [k/2] with
x(i) = xz(j), in which case let i < k/2 be the smallest such vertex, so i is
in exactly one critical edge; otherwise, let ¢ be any vertex with i < k/2. Now
m(F, f) = w(i)e(b—i) = F@)a(i) f(k—i)a(k—i)/ £ () f(b—i). TEa(i) F Q) # F(b—
i)z (k—1), we may move these two quantities closer together whilst keeping their
sum, and so x - f, constant. This increases the product f(#)x(i)f(k —)x(k — 1)
so the edge i(k — i) is no longer critical. If x() is strictly increasing this means
i and k — i are no longer in any critical edge; the same is true even if x() is not
strictly increasing if the change meant a decrease for x(i) and an increase for
x(k — 1), that is, if (i) f(¢) > f(k —d)x(k — i), because 7 is in only one critical
edge. In either of these cases we may then reduce both z(i) and x(k—1) slightly,
increasing the remaining x values, and so increase m(F, f). It must therefore
be that (i) f(i) = f(k —i)x(k — i) if 2() is strictly increasing, and otherwise
(i) f(i) < f(k —i)x(k —i). In the latter case, since f(k — i) < f(i), we cannot
have z(i) = z(k — 1), and so if ¢’ is the maximum vertex with x(i') = x(¢) then
i < i’ < k/2. We may then apply a similar argument to z(i’) and z(k — i) to
find, since k—1’ is in exactly one critical edge, that x(i") f(i') > f(k—i")x(k—1').

But then
k=i _ _=() a(@) o fk=1)

f(@), we obtain the value of m(F, f) claimed in the

f@ = k=)~ a(k—) T @)
which contradicts the assumption about (F, f). We conclude that x() is strictly
increasing and that z(i) f(i) = f(k — i)x(k — ¢) for all 7. As before, this means
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that z(i) = /m(F, f)f(k — i)/ f(i) for all i, and so there is a unique x realizing
m(F, f).

Suppose (F, f) is not critical, and let (F”, f’) be some shape, obtained by
adding some edge ab or by merging two vertices a and b into a new vertex ¢, such
that m(F”, f’) > m(F, f). Let 2’ be a function on V(F’) such that m(F’, f') =
min, ;e gp(pry @' (1)2'(j). Define the function z on V/(F') by = 2 if I is obtained
by adding an edge to F', and otherwise put x(a) = z(b) = 2/(¢) and z(i) = 2’(¢)
for i € V(F) — {a,b}. Then = - f = 1. Moreover if ij € E(F) then, in almost
every case, ij € E(F') and z(i)x(j) = «'(i)2’(j) : the only exceptions to this are
if F is obtained by merging, and if 7 or j equals a or b, but then either (say) i = a
and j ¢ {a,b}, in which case z(i)z(j) = 2’'(c)z’(j), or else i = a and j € {a, b},
in which case z(i)z(j) = «'(¢)z’(¢). Thus in every case z(i)x(j) > m(F’, f'),
which means m(F, f) > m(F’, f').

Hence m(F, f) = m(F’, f') and x is such that m(F, f) = min, ;e g(p) 2(i)z(j).
Since no two vertices have the same weight, F’ was not obtained by merg-
ing, and so 2’ = z. But we know that z(i) = /m(F, f)f(k—1i)/f(i) for
all 4, and it is impossible to add an edge to F' with this x without getting
min, ;e gy @' (1)2'(j) < m(F, f). This contradiction means that (F, f) is criti-

cal.

4.4 Tails

As remarked in §2, most graphs H with t177 edges have v(H) ~ /7. We are
now in a position to substantiate this remark. Roughly speaking, in a graph
with v(H) < /7, there must be an independent subset of the vertices whose
neighbours lie entirely within a significantly smaller subset. We call such a
configuration a tail. A more precise description is this.

Definition 4.7 An e-tail in a graph H of order t is a pair (T,S) such that
T,S CV(H), TnS =0, |T| > |S| + et and |E(T,V(H) — S)| < t~¢|E(H)|.
(Here, E(T,V(H) — S) includes all edges with both ends in T'.)

Notice that an e-tail is also an n-tail for all n <e.

Theorem 4.8 Let € > 0. Let H be a graph of order t with t'*7 edges. If
~v(H) < /T — 5+/€ then H has an e-tail.

Proof. Theorem 4.3 states that H is an e-fit to a shape (F, f) with |F| <
1/e and /7/\/m(F, f) — 4/e < /T = 5\/e, so T/ /m(F, f) < T — e <
VT(1 — /€) whence m(F, f) > (1 — \/e)~2. By Theorem 4.6 we may assume
that (F,f) is critical, so F is a half-graph of order k + 1 for some k, and
m(E, ) = {31 /F@F(k — )} . Therefore S5 \/F(D)J(k —1) <1~ Ve

By the definition of an e-fit, there is a partition of V(H) into V,, a € F,
with |V, | = f(a)t. Let

L(k=1)/2] k [(k=1)/2]

T = U V; and S = U V;, = U Viei -
i=0 i=[(k+1)/2] i=0
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Since the neighbours in F of {0,...,[(k — 1)/2]|} lie entirely within {[(k +
1)/2],...,k}, by the definition of an e-fit we have |E(T,V(H)—2S)| <t~ ¢|E(H)].
So the proof will be finished if we show that |T'| > |S| 4 et. Now

[(k—1)/2] [(k—=1)/2] [(k—1)/2]
TI=18 = > Wil— > Wwl= Y (fG) = f(k—i)t.
=0 1=0 =0

Since E?:o f@)=1and f(i) > f(k—1i) for 0 < i < k/2, we also have (taking
f(k/2) =0if k is odd)

k L(k 1)/2]
L-ve 2 Y VIOfk—i) = f(k/2)+ Z VO k=)
=0
L(k=1)/2]
= 1= Y [0 -2VFOF k=) + Sk - )]
=0
Lk=1)/2] _ )
- 1= Y VIO - VIG-9)
=0
L(k=1)/2]
> - Y VIO - VIG=1)| [VIG+ ViG=1)|
=0
[(k=1)/2]
= 1= > ) - fl—i).
=0
Therefore |T'| — |S| > /et > et as desired. a

Here is a simple necessary condition, in terms of the minimum and maximum
degree, for a graph to have a tail.

Corollary 4.9 Let ¢ > 0 and let H be a graph of order t with t'77 edges. If H
has an e-tail then A(H) > (1 +¢€)6(H) — 2t ¢.

Proof. Let (T, S) be an e-tail in H. Each vertex in S has degree at most A(H).
Each vertex in T has degree at least §(H ), and there are at most t'*7~¢ edges
meeting T but not meeting S. Therefore |S|A(H) > |T|6(H) — 2t1T7¢. Since
|T| > |S| + et this implies |S|(A(H) — 6(H)) > eté(H) — 2t'T7=¢. Now |5| <t
so A(H) — 6(H) > ed(H) — 2t™ ¢, which is the result claimed. a

4.5 Some common examples

We describe here how v(H) can be evaluated asymtotically for a few common
families of graphs. We express the results as limiting values of v(H) as t — oo.

Almost all graphs of order ¢ have minimum and maximum degree in the range
t/2 +t2/3 (see [2]). Likewise almost all graphs with t'*7 edges have degrees in
the range t™ /2 £t>7/3. So the next result follows at once from Theorem 4.8 and
Corollary 4.9.
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Corollary 4.10 If H is a regular graph with t'T7 edges then v(H) ~ /T.
For almost all graphs H with t'77 edges, v(H) ~ /7.
For almost all graphs H, v(H) ~ 1.

Consider now the complete r-partite graph Kg ¢ g,¢,....3,+ of order ¢, where
>, Bi = 1. Suppose this graph has a tail (T,S5). Since T is (apart from
t27¢ edges) an independent set, 7' must be contained almost entirely within one
of the r vertex classes. But then S must be almost the whole of V(H) — T,
else more than t27¢ edges from T would avoid S. Since |T'| > |S| + €/2 this
means that |T'| > t/2; hence Kg,¢8,¢... 8+ does not have a hole unless § =

max{f,...,0-} > 1/2.
Suppose now that 3 > 1/2. Then Kg 1—gy C Kp,t,pat,...50t C Ka—p)ye +

Kpi. We saw in §4.1 that Y(Kpe,(1—pyt) ~ 2¢/B(1 —B3). Moreover, if we
weight the vertices of H = K(1_g); + Kp: by putting weight /38/(1 — 3) on
the vertices of K(;_gy; and weight /(1 — 3)/3 on the other vertices, we obtain
Yuvern OO < B Byt 4 (1PN8/ 078 <t if ¢ s large, and
so1(H) < 2,/FT = B).

We summarize these observations as follows.
Corollary 4.11 Let f = max{(i,..., 0}

If B < 1/2 then ¥(Kpyt pot,...p,t) ~ V(K¢) ~ 1.
If B > 1/2 then

Y(Kpe,1-p)t) ~ VKt Bot,....p,) ~ V(K q—gy + Kpi) ~ 2¢/B(1 = ).

4.6 Dense graphs

Finally in this section we give a very simple argument showing that vy(H) is
bounded below roughly by the density of H. We make use of this bound in §6.

Theorem 4.12 Let ¢ > 0 and let H be a graph of order t > (1/¢)'/¢ and
density p. Then v(H) > p — 5/e.
Proof. Let H have t'*7 = p(}) edges. Let (F, f) be a shape given by The-

orem 4.3 to which H is an e-fit, such that v(H) > /7/v/m(F, f) — 44/e. By
Theorem 4.6 we may assume that F is a half-graph of order k£ + 1. The set E of

edges of H lying between classes corresponding to edges of F satisfies (taking
f(k/2) =0if k is odd)

(1—t—ﬁ>p(;) EDS (f (2“’5)+ ST SO + e+ 1t

i>k/2 i<jriti>k

and because k + 1 < 1/e < t€ this means

S FGO)FG) = p -t YA =) =7 > p 37 > p—3e.
i+j>k
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Since Zf:o f(@) =1 we have

k k
STHOFG) = D f) Y] fG)
i+i>k i=0 j=k—i
k k
= 2 IO 2 10+ @ > 16
i>k/2 j=k—i i<k/2 j=k—i
k k
N DI DI D IR0
i>k/2 j=k—1 i>k/2 i=k—j
k k
= f(k/2) Z N2 > f6) > fU
i>k/ i>k/2 j=k—1t
< f(k/2)+ Z £(i)

i>k/2

and so f(k/2)+23, /5 (i) = p—3e. On the other hand, since f (i) < f(k—1)
for i > k/2, we have

1 k
e = S VIO —0) 2 (k242 S (i) > p—3e.
V m(F7 f) ; i>zk;2 g

Therefore v(H) > /7(p — 3¢) — 4/ > /Tp — 3¢ — 4y/e. Now we may assume
that € < 1/25 and that p > 5./, and so t7 = p(t — 1)/2 > \/et, implying t!77 <
e 1/2 < t¢/2 Tt follows that y(H) > (1—€/2)p—3e—4+/e > p—de—4\/e > p—54/e,
as claimed. i

5 Extremal graphs

It is asserted in [18] that the extremal graphs for ¢(K;) are pseudo-random
graphs of density 1 — X and order (2a/(1 — \))ty/logt, or essentially disjoint
unions of such graphs. (Here the term pseudo-random is to be interpreted in
the natural sense of [17] or as quasi-random in Chung, Graham and Wilson [5].)
A critical gap in the argument was plugged in [11]. The argument can easily
be adapted to show that, for graphs H with |H| large and v(H) bounded away
from zero, the extremal graphs for ¢(H) are also pseudo-random.

A crucial part of the argument is as follows. Suppose we have a graph G
of order n and density p = 1 — q. Let X be a subset of the vertices and let
Y =V(G) — X. Define the three densities

_elx) _ e(X.,Y) o)
[XTYT
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where e(X), e(Y) and e(X,Y) are the numbers of edges of G spanned by X,
spanned by Y and joining X to Y. Likewise define gx = 1—px, ¢xy = 1 —pxy
and qy = 1 — py. It is the principal feature of pseudo-random graphs that G
is pseudo-random if and only if pyxs differs little from px for every X’ with
|X’| = | X]|, which of course implies that each of px, pxy and py are close to p,
the density of G. Note that, whether or not G is quasi-random, the density of
G satisfies

q
if G is large, where ¢ =1 — p and = = | X|/|G|. Now put

22qx +22(1 — x)gxy + (1 — z)2qy

2 2z(l-wz) (1-x)?
¢ =k Ve
By taking logarithms and applying Jensen’s inequality it can be seen that g > ¢*
with equality if and only if ¢x = ¢xy =gy = ¢.
The following proposition was proved in the case H = K; by the first author
in [11] in response to a question of Sés.

Proposition 5.1 Given e > 0 there exists T = T'(€) with the following property.

Let H be a graph with t > T wvertices and with v(H) > e. Let G be a graph
of order n and connectivity k(G) > n(logloglogn)/(loglogn), having a vertex
partition into X and Y as described above, where ¢ < qx,qxvy,qy < 1 and
q" <1—ce. Supposen > [(1+€)y(H)t,/log, . t]. Then G~ H.

The proposition shows that, as far as minors are concerned, a graph with
a partition as described behaves as well as a graph of density 1 — ¢* > 1 — ¢;
in particular (using the arguments of §3.3) the extremal graphs for ¢(H) must
have the property that gx = A for all X, and so must be pseudo-random.

Proposition 5.1 can be proved by adapting the proof of Theorem 2.5 using
the ideas of [11]. We give only a sketch here. The essential difference from the
proof of Theorem 2.5 is that the vertices of X and Y are ordered separately,
each according to the value of the parameter q(u, X)%q(u,Y)!~*, where q(u, X)
is the proportion of the vertices of X not joined to the vertex u. The sets
X and Y are then each partitioned into blocks according to their respective
orderings. The parts W, are now once again chosen at random, the condition
for goodness being that each of W and Q(W) should be well-distributed both
with respect to the ordering of X and with respect to that of Y. The remainder
of the proof then follows a similar line to that of Theorem 2.5, with appropriate
modifications to the calculations.

6 Sets of forbidden minors and linking

The classical extremal theory takes into account not just a single forbidden
graph but classes H of forbidden graphs. So we might define

ex(H) = lim inf{c: |G| > n,e(G) > c('?') implies 3H € H,G >~ H }.
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If we put x(H) = min{x(H) : H € H} then, because (x(H) — 1)-partite Turdn

graphs contain no member of H, it follows at once from the extremal result for

a single graph H that ex(H) = min{ex(H) : H € H} =1 — (x(H) — 1)~ .
When considering a class H of forbidden minors, we define

¢(H) = inf{c: e(G) > ¢|G| implies G = H for some H € H } .

Clearly ¢(H) < inf{c(H) : H € H}. But the fact that the extremal graphs
are pseudo-random means that equality does not always hold. If |H| is bounded
then equality essentially does hold, because if for each H € ‘H the random graph
G(n, p) almost surely does not contain an H minor, then G(n,p) almost surely
contains no H minor for all H € H. However, this statement can fail if |H] is
unbounded.

Indeed, a vivid instance of this phenomenon occurs if we take

H = {H:|H <t and 20(H)>|H|+t/3}.

Since each graph in H has density at least 2/3, it follows from Theorems 2.2
and 4.12 that (if ¢ is large) inf{c(H) : H € H} > (2a/3 + o(1))t\/logt. But
it is proved in [16], based on an idea of Mader [12], that ¢(H) < ¢. The fact
that the y/logt factor is absent here is crucial to the proof in [4] that a graph
G with vertex connectivity x(G) > 22k is k-linked; the weaker bound ¢(H) <
(2a/3 + o(1))ty/logt would require k(G) = Q(kv/1ogk) as in Robertson and
Seymour [15].

7 Very sparse minors

As stated, our main theorems above give information only for graphs with v(H)
bounded away from zero. It has been observed, after the proof of Theorem 2.5,
that the proof given for that theorem will not work for graphs with y(H) <
(logloglog t)*l/ 4. Thus the methods here cannot tell us anything about very
sparse graphs, say with t(logt)! edges.

Finding very sparse graphs as minors generally involves difficulties that are
different to those encountered when looking for somewhat denser graphs. For
dense graphs, the problem is to find edges between the subsets W, that are
contracted to form the vertices u € H. This is less of a problem for sparse
graphs. Consider for example the graph K, with ¢ — m further vertices each
joined to one vertex of the K,,, where m is small, say m = t2/3. (This graph
has 7 no larger than t~'/3, as seen by putting all the weight uniformly on K,,.)
The problem with finding this graph as a minor is just to find at least ¢ vertices
— there will usually then be enough edges around to find the K,,.

The question is open whether the extremal graphs for ¢(H) are always ran-
dom. A non-trivial example of a sparse H for which the extremal function is
known exactly is K2+ and in this case the extremal graphs are essentially
disjoint unions of K;_1’s — see [12]. This means that, in order to get a posi-
tive answer to our question, we shall need to admit complete graphs as random
graphs (with edge probability one).
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As for Theorems 2.3 and 2.5, the question is whether the threshold prob-
ability for an H minor is always the same as the threshold density. In one
particular instance we can show that this is not the case. A natural candidate
of interest that lies in the borderland between graphs with ¢ edges and graphs
with ¢17¢ edges is the k-cube H = Qy,, with t = 2 vertices and (¢/2)log, ¢
edges. Riordan [14] has proved that the threshold value of p at which @ ap-
pears as a spanning subgraph of G(t,p) is p = 1/4. As he points out in discussion
this implies that, for example, G(2t,p) will almost surely have a Q) minor if
p > 0-07 (since a 1-factor will almost surely appear once p > 2/logn and then
G(2t,p) will “have G(t,1/4) as a minor”). Consider, though, the graph G of
order t = 2*, comprising two copies of K/, with £/2 — 1 independent edges in
between, having density p ~ 1/2 and x(G) = t/2 — 1. The graph G cannot
contain @i, because the edge-isoperimetric inequality of Harper, Bernstein and
Hart [7] says that in any partition of Qf into two halves there must be at least
t/2 edges between the halves. Therefore the extremal density for the appear-
ance of Qg is in graphs of order ¢ not the same as the threshold probability.
However, we do not know of similar constructions when, say, n = 2t.

References

[1] B. Bollobds, Extremal Graph Theory, Academic Press, London (1978)
xx+488pp.

[2] B. Bollobds, Random graphs, Cambridge Studies in Advanced Mathemat-
ics, 73 (2001). Second edition. Cambridge University Press, Cambridge,
xviii4-498 pp.

[3] B. Bollobés, P. Catlin and P. Erdés, Hadwiger’s conjecture is true for almost
every graph, Furop. J. Combinatorics, 1 (1980) 195-199.

[4] B. Bollobds and A. Thomason, Highly linked graphs, Combinatorica 16
(1996) 313-320.

[5] F.R.K. Chung, R.L. Graham and R.M. Wilson, Quasi-random graphs,
Combinatorica 9 (1989), 345-362.

[6] P. Erd6s and M. Simonovits, A limit theorem in graph theory, Studia Sci.
Math. Hungar. 1 (1966), 51-57.

[7] S. Hart, A note on the edges of the n-cube, Discr. Math. 14 (1976), 157
163.

[8] A.V. Kostochka, The minimum Hadwiger number for graphs with a given
mean degree of vertices (in Russian), Metody Diskret. Analiz. 38 (1982)
37-58.

[9] W. Mader, Homomorphieeigenschaften und mittlere Kantendichte von
Graphen, Math. Ann. 174 (1967) 265-268.

25



[10] W. Mader, Homomorphiesétze fiir Graphen, Math. Ann. 178 (1968) 154—
168.

[11] J.S. Myers, Graphs without large complete minors are quasi-random, Com-
binatorics, Probability and Computing 11 (2002), 571-585.

[12] J.S. Myers, The extremal function for unbalanced bipartite minors, Discrete
Mathematics 271 (2003) 209-222.

[13] J.S. Myers, Extremal theory of graph minors and directed graphs, Ph.D.
dissertation, University of Cambridge (2003).

[14] O. Riordan, Spanning subgraphs of random graphs, Combin. Probab. Com-
put. 9 (2000), 125-148.

[15] Robertson, N. and Seymour, P.D., Graph Minors. XIII. The disjoint paths
problem, J. Combin. Theory Ser. B 63 (1995) 65-110.

[16] A. Thomason, An extremal function for contractions of graphs, Math. Proc.
Cambridge Phil. Soc. 95 (1984), 261-265.

[17] A. Thomason, Pseudo-random graphs, in “Random Graphs '85”, (M.
Karonski and Z. Palka, Eds), Annals of Discrete Math. 33 (1987), 307—
331.

[18] A. Thomason, The extremal function for complete minors, J. Combinatorial
Theory Ser. B 81 (2001) 318-338.

26



