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Tiling with Regular Star Polygons

Joseph Myers

The Archimedean tilings (Figure 1) and polyhedra will be familiar to many readers. They
have the property that the tiles of the tiling, or the faces of the polyhedron, are regular
polygons, and that the vertices form a single orbit under the symmetries of the tiling or
polyhedron. (Grünbaum and Shephard [1] use Archimedean, in relation to tilings, to refer to
the sequence of polygons at each vertex being the same, and uniform to refer to the vertices
forming a single orbit. These describe the same set of tilings, but the sets of k-uniform tilings
(those with k orbits of vertices) and k-Archimedean tilings (those with k different types of
vertices) differ for k > 1. I do not make this distinction in this article, but use the term
uniform to avoid ambiguity. In relation to polyhedra, the distinction made between these
terms is different.)

The Archimedean polyhedra were attributed to Archimedes by Pappus [3, 4], although the
work of Archimedes on them has not survived; the tilings may have been named by analogy.
The first surviving systematic account of either the tilings or the polyhedra seems to be that of
Kepler [5, 6]. The literature on the 2-uniform and 3-uniform tilings is discussed by Grünbaum
and Shephard [1]; the k-uniform tilings for k ≤ 6 are presented by Galebach [15].

Given these tilings and polyhedra, for centuries people have generalised in different ways
(for example, through changing the definitions of tilings and polyhedra, through changing the
permissible tiles and faces, or through considering analogous concepts in higher dimensions).
Some of these generalisations have yielded more aesthetically pleasing results than others.
One form of generalisation, considered by Kepler, is allowing star polygons. Two different
types of regular star polygons may be considered. One, the modern version, treats a star
n-gon as a polygon with n edges, which intersect each other; only the n endpoints of those
edges are considered as corners of the polygon, and not the points of intersection of the
sides.1 The notion of ‘tilings’ with such polygons is not very clear, but it has been considered
thoroughly [7]; many of these tilings are not especially aesthetically pleasing because of the
density of the crossing lines that make up the edges of the polygons, and a single drawing
can represent multiple distinct tilings. When polyhedra with such polygons as faces are
considered, the set of uniform polyhedra [8, 9, 10, 11, 12] appears; these are rather more
attractive; some readers may have seen the author’s models of some of these polyhedra on the
Archimedeans’ Societies Fair stand in 2002. Kepler considered regular polyhedra with this
notion, finding the small and great stellated dodecahedra but not the great dodecahedron or
great icosahedron which were later found by Poinsot [13].

The other type of regular star n-gon (guided more by aesthetics than by mathematical
generalisation) is a nonconvex 2n-gon with equal sides and alternating angles; n points of
angle α (with 0 < α < (n − 2)π/n) and n dents of angle 2(n − 1)π/n − α; we denote this
polygon nα. When considering tilings, Kepler used this notion; he drew various patches
of tilings using such polygons, and mentioned various such tilings found in the course of
enumerating the uniform tilings with regular convex polygons. However, he never made it
clear exactly which polygons and tilings were allowed. This type of regular star polygon yields
more attractive tilings than the modern more mathematical type of star polygon (which yields
tilings rather too densely cluttered with lines). It would be natural mathematically to consider

1With this version, a polygon is considered regular if its symmetries act transitively on the pairs (vertex,
edge incident with that vertex). Infinite polygons, aperiogons and zigzags, may be allowed; when they are,
[7] notes that their enumeration of tilings is only conjectural.
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polygons with equal sides and alternating angles, convex or nonconvex, but given the aesthetic
and historical motivation we do not do so here.

Grünbaum and Shephard [2] made the first attempt at enumeration of such tilings (and
so some sort of completion of Kepler’s enumeration) under definite rules, attempting to find
uniform or k-uniform tilings with regular polygons and any nα star polygons. In [1] they
adjusted the definitions used, so that the vertices of the tiling are only those points where
three or more tiles meet; if a dent of a star is filled entirely by the corner of one other polygon,
that is a corner of the polygons but not a vertex of the tiling. They also consider tilings that
are not edge-to-edge: where the polygons involved may have different edge lengths, and some
vertices are in the middle of edges. They presented drawings of uniform tilings involving
star polygons, which they conjectured show all such tilings, giving as an exercise proving that
their list of uniform tilings involving star polygons which are not edge-to-edge is complete, and
another exercise asking whether there were any other (edge-to-edge) uniform tilings involving
star polygons. Apart from this work and that of Kepler, such tilings do not seem to have
been considered in the mathematical literature, although some are shown in [14].

When I attempted those exercises in 1993, it turned out, however, that those lists were
not complete; there are three uniform tilings, one of them not edge-to-edge, which are missing
from their lists, shown in Figures 2(a), 4(l) and 4(n). These additional tilings were used as
designs for certificates presented to those receiving awards in the 2001 Problems Drive [16].
This article presents the full enumeration, with an outline of how it may be verified.

First we consider how the uniform tilings without star polygons may be enumerated. If
k regular polygons with n1, . . . , nk edges respectively meet at a vertex, we must have

k∑

i=1

ni − 2

ni

= 2.

Clearly 3 ≤ k ≤ 6 and for each k it is easy to determine the finitely many solutions. There are
17 possible choices of the ni, where different orders are not counted as distinct; where different
cyclic orders are counted as distinct (but the reversal of an order is counted as the same as
that order), this yields 21 possible species of vertices. Some of these cannot occur in any tiling
by regular polygons at all; for example, 3 . 7 . 42 is the only possibility involving a heptagon,
and this would mean that triangles and 42-gons must alternate around the heptagon, which is
impossible since 7 is odd. This leaves 15 species that can occur in tilings by regular polygons.
Of these, 11 yield the uniform tilings shown in Figure 1; it turns out that each yields a unique
uniform tiling.2 The vertex 4 . 82 can only appear in the uniform tiling it generates, and not
in any other tiling by regular polygons, since it is the only one of the 15 species containing an
octagon; the others can appear in k-uniform tilings for suitable k (and, for sufficiently large k,
all species can appear together in one tiling).

Suppose now we consider tilings involving regular star polygons. In addition to ordinary
regular polygons, a vertex of such a tiling may have points and dents of star polygons. We
only consider uniform tilings, so all vertices are alike. Observe that no vertex can have two
dents present, and two star points cannot be adjacent at a vertex. Also, since the tiling is
supposed to contain some star polygon, it is easy to see that some vertex, and so all vertices,
must have a star point. (For, if any star point is not a vertex, it fills a dent of a second star;

2Properly, it is necessary to show that each of the tilings in Figure 1 actually exists, since it is easy to
draw what look like tilings by regular polygons but are actually fakes with polygons that are not exactly
regular; examples of such drawings may be found in children’s colouring books. It is not quite trivial that
‘local’ existence of the tilings implies global existence, but we do not discuss existence proofs further here.
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but then the points of that star on either side of the filled dent must lie at vertices of the
tiling.)

First we dispose of the tilings that are not edge-to-edge. This means that a vertex lies
part way along the edge of some polygon. The vertex cannot have a dent, or two adjacent
star points, but it must have a star point. Thus it has present either two ordinary regular
polygons (one a triangle, the other a triangle, square or pentagon), with at least one star point
(on one side, or between the polygons), or one regular polygon with star points on either or
both sides. Bearing in mind that there cannot be a vertex at a dent, a careful analysis of
cases (which the reader is encouraged to verify; it is convenient to start by showing that the
vertex must lie on the edge of an ordinary regular polygon, not a star) shows that the possible
tilings are those of Figure 2. The new one (used in the Problems Drive certificate for silliest
answer) is Figure 2(a).

Having found those tilings, we need now only consider edge-to-edge tilings, in which all
polygons will have the same edge length. In general the analysis of these is more systematic
than that of the tilings that are not edge-to-edge. Because it essentially consists of analysis
of many cases, most of the details are not presented here but are left to the reader, who will
need to draw a large number of little diagrams for the various cases.

It is convenient to separate the cases where some dent lies at a vertex of the tiling (so,
since the tiling is uniform, all vertices have a dent) from those where no dent is a vertex. If
some dent is a vertex, it cannot be filled entirely by points of stars, so the polygons in the
dent are k (for some integer k) or 3 . 3, 3 . 4 or 3 . 5, and each case is considered in turn,
yielding the tilings in Figure 3 (four of which actually show an example of an infinite family
of tilings).

Now suppose that no dent is a vertex. Considering the possible vertex figures, clearly no
two star points can be adjacent; since no dent is a vertex, no point can lie between two regular
polygons with different numbers of edges; and if a point of a star lies between two regular
polygons with the same number of edges, their next vertices must fill its dents exactly. This
means that there must be two adjacent regular polygons with the same number of vertices,
separated by the point of a star, since we are only looking for tilings which do involve star
polygons. This leads to the table (Table 1) of cases for the sequence of regular polygons
(ignoring the star polygons). The new tilings are Figure 4(n) (used for the certificate for the
winners) and Figure 4(l) (used for the certificate for the wooden spoon).

By way of example, consider the case k2 (k ≥ 3). If there is a single star point at the
vertex, say sα, we have α = 4π/k and 2(s−1)π/s−α = π +2π/k, so 2/s+6/k = 1. There is
a combinatorial constraint that 3 divides k, and the integer solutions yield Figures 4(e), (f)
and (g). If there are two star points at the vertex, say sα and tβ, both dents are filled by the
k-gon vertex, so 2(s − 1)π/s − α = π + 2π/k = 2(t − 1)π/t − β; thus α = (1 − 2/s − 2/k)π
and β = (1 − 2/t − 2/k)π, yielding 1 = 4/k + 1/s + 1/t. Combinatorially, k is even, and if
s 6= t then 4 divides k; the solutions subject to these constraints yield Figures 4(h) to (k).

A natural extension of this work would be to enumerate 2-uniform edge-to-edge tilings
by regular polygons and regular star polygons. I have done some work towards this, but
completing such an enumeration by hand would be substantially time-consuming and error-
prone. As Kepler’s diagrams include various examples of k-uniform tilings (and of small
patches that can plausibly be extended to such tilings) such enumeration could be seen as
continuing the systematic completion of Kepler’s work. It would be interesting to develop a
sufficiently systematic method of finding k-uniform tilings involving star polygons that such
tilings could be searched for by computer. Even for tilings not involving star polygons, more
efficient enumeration algorithms might be able to extend the enumeration far beyond that
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of [15]. A deeper problem would be to attempt to gain some understanding of the asymptotic
behaviour of the number of k-uniform tilings of any variety.

Another direction would be to attempt to determine which polygons can occur at all
in edge-to-edge tilings by regular polygons and regular star polygons, with no uniformity
conditions. For example, can regular n-gons or n-stars with n > 18 occur? Can regular
heptagons occur?

When considering tilings that are not edge-to-edge, Grünbaum and Shephard present
as a research exercise determining the 2-uniform tilings, not involving star polygons, with
the additional constraint that the tilings be equitransitive (i.e., that the symmetries act
transitively on each congruence class of tiles). This problem could be attempted with or
without that constraint, or with star polygons allowed. An attempt could also be made at a
search algorithm for such tilings that could be implemented on computer.

Vertex sequence Tilings (Figure 4)
35 (a)
34 . 4 (b)
34 . 5 None
34 None
33 . k (k ≥ 4) None
33 None
32 . k (k ≥ 4) None
32 . 52 None
32 . a . b (4 ≤ a ≤ 5 ≤ b, a < b) (c), (d)
32 . 42 None
k2 (k ≥ 3) (e) to (k)
3 . k2 (k ≥ 4) (l), (m)
3 . 43 (n)
3 . 42 . 5 None
43 (o)
42 . k (k ≥ 5) None
4 . k2 (5 ≤ k ≤ 7) (p)
53 (q)
52 . k (6 ≤ k ≤ 9) None
5 . 62 None

Table 1: Cases where no dent is a vertex
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(a) (36) (b) (44) (c) (63)

(d) (34
. 6) (e) (33

. 42) (f) (32
. 4 . 3 . 4)

(g) (3 . 4 . 6 . 4) (h) (3 . 6 . 3 . 6) (i) (3 . 122)

(j) (4 . 6 . 12) (k) (4 . 82)

Figure 1: Archimedean tilings
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(a) (b) (c)

(d) (e) (f)

Figure 2: Uniform tilings involving star polygons which are not edge-to-edge

(a) (32
. 8∗π/12

. 4∗∗π/3
. 8∗π/12

) (b) family (3 . 3∗α . 3 . 3∗∗α ) (c) family (3 . 6∗α . 6∗∗α )

(d) family (4 . 4∗α . 4∗∗α ) (e) family (6 . 3∗α . 3∗∗α ) (f) (4 . 6∗π/6
. 6∗∗π/2

. 6∗π/6
)

Figure 3: Uniform tilings in which some dent is a vertex
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(a) (33
. 12∗π/6

. 32
. 12∗π/6

) (b) (32
. 8∗π/12

. 3 . 4 . 3 . 8∗π/12
) (c) (3 . 4 . 6 . 3 . 12∗π/6

)

(d) (3 . 4 . 8 . 3 . 8∗π/12
) (e) (92

. 6∗
4π/9

) (f) (122
. 4∗π/3

)

(g) (182
. 3∗

2π/9
) (h) (6 . 6∗π/3

. 6 . 6∗π/3
) (i) (8 . 3∗π/12

. 8 . 6∗
5π/12

)

(j) (8 . 4∗π/4
. 8 . 4∗π/4

) (k) (12 . 3∗π/6
. 12 . 3∗π/6

) (l) (3 . 9 . 3∗π/9
. 9)

(m) (3 . 6 . 6∗π/3
. 6) (n) (3 . 42

. 6∗π/6
. 4) (o) (4 . 6∗π/6

. 4 . 6∗π/6
. 4 . 6∗π/6

)

(p) (4 . 6 . 4∗π/6
. 6) (q) (52

. 4∗π/10
. 5 . 4∗π/10

)

Figure 4: Uniform tilings in
which no dent is a vertex
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