

Outline

- Part I : A framework that will allow
 - addition of linguistically interesting features to existing treebank resulting in a more 'fine-grained' treebank
 - building statistical grammars parametrized on these features
- Part II : learn statistical tendencies of these features : connect to large amounts of data :
 - particularly relevant for phenomenon that is lexical in nature (e.g. valence)
 - ➡ evidence for these in treebank is sparse due to Zipfian distributions
- Evaluate utility of various features for learning

🛞 informatics	3	Tejaswini Deoskar
		3

Example of Lexical Scarcity in Treebank data

- Penn Treebank (1 million sentences) contains about 7450 verb types (125,000 tokens)
 - → 2830 have occurred only once (38% types)
 - ➡ 1034 have occurred twice (14% types)
- Thus not possible to obtain accurate statistical subcategorization tendencies for a large portion of lexicon

4

🔅 informatics

Tejaswini Deosk

Treebanks

- Collections of sentences hand-annotated with linguistic structure
- Penn Treebank (Marcus et. al., 1993): 40,000 Wall Street Journal sentences

Treebanks

- Treebank Grammar : extracted from a treebank
 - Both Symbolic and Probabilistic parts from Treebank
 - This talk : PCFGs (Probabilistic Context Free Grammars)

Treebanks

- Current treebanks contain coarse representations
 - Spurred research in statistical parsing
 - Allows for consistent and cheaper annotation
- Statistical grammars use coarse representations
 - statistics become very sparse if fine-grained
 - parsers even coarser than treebank
- For some aspects of linguistic research, and also high-end parsers
 - Fine-grained representations might be better
 - Overt representations of valence, agreement, and localising long-distance dependencies useful

Outline of Methodology for Treebank refinement

- I. Augment each node-label in tree with a feature-structure
 - → feature-structures contain (typed) features with (atomic) values
- 2. values of features incorporated into node-label of tree
 - → more fine-grained label

Step I : Tree augmented with feature-structures

Step II : Convert features into context-free symbols

Step II : Convert features into context-free symbols

mplementation

- Parsing treebank trees with a Feature-constraint grammar
 - Details of implementation in Schmid (2000), Deoskar & Rooth (2008), Deoskar (2009)
- Highlights
 - ➡ Reusable software for constraint-solving, and PCFG compilation
 - ➡ Robust : In case of ambiguities, unit freq of tree split into fractions
- Effort required for grammar-development : Feature-constraint grammar

12

- Intuitive for linguists
- Difficult to manipulate existing parsers

12.6. 0.0	INTO FIND OF L	-
		~

ejaswini Deosl

A control verb

A control verb

Performance

Treebank conversion

Coverage: > 98.5 % of Treebank trees

- Most ambiguities/failures due to remaining grammar bugs.
- PCFG
- Labelled bracketing f-score: 86.8 % on Section 23 of the Penn Treebank

20

- Competitive performance for English
 - Best results for empty category detection (84.1 %)

Motivation for learning from unlabelled data

Most words have impoverished entries !!

attaches	VBZ.np 1.0			
attack	NN 22	VBP 1.0	VB.n 3.0	VB.z 1.0
abandon	VBZ.n 2.0			
abate	VB.z 1.0			

22

Penn Treebank : 7450 verb types , 38% once, 14 % twice

informatics

Learning from unlabelled data

How?

- Expectation Maximization (EM) (Dempster, et.al., 1977)
- good mathematical properties, convergence

Experimental Setup

informatics

- ~ I Million words from Penn Treebank
- 4, 8, 12, 16 Million words of unlabeled text (Wall Street Journal, sentence length < 25 words)
- Evaluations by parsing held-out sentences from the Penn Treebank
 - Task: assigning correct valence to verbs that are *unseen* in the labeled data.

25

- 118 novel verb types, 1200 tokens
- evaluated against the treebank tree

Learning from unlabelled data

Smoothed

Treebank Model

Parsing

Unlabeled Data

EM - based

Method

% Error

Reduction

Challenge : Unlabeled data tends to harm rather than help an already accurate model Constrain Unsupervised Model • Frequency transformations Deoskar(2008, 2009) • N copies of Labelled data + unlabelled data (To appear (2011), with Mylonakis, Sima'an) • More general method but worse results informatics 24 Valence Detection for Novel Verbs 4 M 8 M 12 M 16 M words words words words

Valence Error Percentages for Novel Verbs

29.86

27.8

25.89

12.76

29.86

27.8

25.18

15.67

29.86

27.8

24.7

17.5

29.86

27.8

27.08

9.31

informatics	26	Tejaswini Deoskar
		26

No verb specific

information

p<0.0001

Improvements in a variety of frame-types

Frame	% Error Reduction
transitive	21.52
intransitive	11.36
NP PP-CLR	7.14
PP-CLR	25
SBAR	0
s.e.to (control)	25
PRT NP	12.5
NP PP-DIR	14.28
NP NP	11.11

30

32

informatics

т

Summary

informatics

Other categories

- Improvements in Noun valence (but impoverished frames)
- Improvements in other lexico-syntactic dependencies: Adverb attachment to sentential, nominal, verbal nodes

31

informatics

Summary

• Framework

- allows easy annotation of Treebank trees with feature-structures
- compilation of PCFG grammars containing features
- ➡ Effort required is in development of a feature-contraint grammar

32

➡ PCFGs can be built containing various subsets of features

Tejasw

🛞 informatics

Tejaswir

Summary

- Framework
 - allows easy annotation of Treebank trees with feature-structures
 - compilation of PCFG grammars containing features
 - ➡ Effort required is in development of a feature-contraint grammar
 - → PCFGs can be built containing various subsets of features
- Connect to much larger data : Possible to improve the distributions of these features from unlabelled data (at least for some features, like valence)

Summary

- Framework
 - allows easy annotation of Treebank trees with feature-structures
 - compilation of PCFG grammars containing features
 - Effort required is in development of a feature-contraint grammar
 - ➡ PCFGs can be built containing various subsets of features
- Connect to much larger data : Possible to improve the distributions of these features from unlabelled data (at least for some features, like valence)
- Experiment with utility of various features for statistical grammar learning

informatics 32 Tejaswini Deoskar	informatics	32	Tejaswini Deoskar
22 Future Work			
 Which features? Current grammar contains very few features: focus on features related to valence and constraining empty categories. Experiment with more features Finer divisions of clausal valence: S and SBAR Fine-grained Treebank grammars for other languages. 		Thank You!	
informatics 33 Tejaswini Deoskar 33	informatics	34	Tejaswini Deoskar 34