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Outline
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• Part I :  A framework that will allow

!  addition of linguistically interesting features to existing treebank 
resulting in a more ‘fine-grained’ treebank

! building statistical grammars parametrized on these features

• Part II :  learn statistical tendencies of these features : connect to large 
amounts of data :  

! particularly relevant for phenomenon that is lexical in nature (e.g. 
valence) 

! evidence for these in treebank is sparse due to Zipfian distributions

• Evaluate utility of various features for learning
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Example of Lexical Scarcity in Treebank data
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• Penn Treebank (1 million sentences) contains about 7450 verb types 
(125,000 tokens)

! 2830 have occurred only once (38% types)

! 1034 have occurred twice (14% types)

• Thus not possible to obtain accurate statistical subcategorization tendencies 
for a large portion of lexicon
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• Collections of sentences hand-annotated with linguistic structure

• Penn Treebank (Marcus et. al., 1993 ):  40, 000  Wall Street Journal sentences
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• Treebank Grammar : extracted from a treebank

• Both Symbolic and Probabilistic parts from Treebank

• This talk :  PCFGs ( Probabilistic Context Free Grammars )
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Treebanks

• Current treebanks contain coarse representations 

! Spurred research in statistical parsing

! Allows for consistent and cheaper annotation

• Statistical grammars use coarse representations 

! statistics become very sparse if fine-grained

! parsers even coarser than treebank

• For some aspects of linguistic research, and also high-end parsers

! Fine-grained representations might be better

! Overt representations of valence,  agreement, and localising long-distance 
dependencies useful
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Outline of Methodology for Treebank refinement

I. Augment each node-label in tree with a feature-structure

! feature-structures contain (typed) features with (atomic) values

2. values of features incorporated into node-label of tree

! more fine-grained label
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Augmenting Treebank Trees
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 Step I : Tree augmented with feature-structures

S

NP-SBJ VP

MD
‘ll

VP

VB 
see fewer gimmics

Root

PRP
You

NP

10

10

Tejaswini Deoskar

 Step I : Tree augmented with feature-structures

S

NP-SBJ VP

MD
‘ll

Slash   =  -
Stype  = fin
parent = root

VP

VB 
see fewer gimmics

Root

PRP
You

Slash   =  -
Vform = fin

Slash   =   -
Vform = baseVal   = aux

Vsel = base

NP

10

10

Tejaswini Deoskar

Step II : Convert features into context-free symbols

S

NP-SBJ VP

MD
‘ll

Slash   =  -
Stype  = fin
parent = root

VP

VB 
see fewer gimmics

Root

PRP
You

Slash   =  -
Vform = fin

Slash   =   -
Vform = baseVal   = aux

Vsel = base

NP

11

11

Tejaswini Deoskar

Step II : Convert features into context-free symbols

S

NP-SBJ VP

MD
‘ll

Slash   =  -
Stype  = fin
parent = root

VP

VB 
see fewer gimmics

Root

PRP
You

Slash   =  -
Vform = fin

Slash   =   -
Vform = baseVal   = aux

Vsel = base

NP

. - . fin . root

11

11



Tejaswini Deoskar

Step II : Convert features into context-free symbols

S

NP-SBJ VP

MD
‘ll

Slash   =  -
Stype  = fin
parent = root

VP

VB 
see fewer gimmics

Root

PRP
You

Slash   =  -
Vform = fin

Slash   =   -
Vform = baseVal   = aux

Vsel = base

NP

. - . fin . root

. - . fin

11

11

Tejaswini Deoskar

Step II : Convert features into context-free symbols

S

NP-SBJ VP

MD
‘ll

Slash   =  -
Stype  = fin
parent = root

VP

VB 
see fewer gimmics

Root

PRP
You

Slash   =  -
Vform = fin

Slash   =   -
Vform = baseVal   = aux

Vsel = base

NP

. - . fin . root

. - . fin

. - . base

11

11

Tejaswini Deoskar

Step II : Convert features into context-free symbols

S

NP-SBJ VP

MD
‘ll

Slash   =  -
Stype  = fin
parent = root

VP

VB 
see fewer gimmics

Root

PRP
You

Slash   =  -
Vform = fin

Slash   =   -
Vform = base

Val   = aux
Vsel = base

NP

. - . fin . root

. - . fin

. - . base. aux . base

11

11

Tejaswini Deoskar

Implementation

• Parsing  treebank trees with a  Feature-constraint grammar

• Details of implementation in Schmid (2000), Deoskar & Rooth 
(2008), Deoskar (2009) 

• Highlights

! Reusable software for constraint-solving,  and PCFG compilation

! Robust :  In case of ambiguities, unit freq of tree split into fractions

• Effort required for grammar-development :   Feature-constraint  grammar

• Intuitive for linguists

• Difficult to manipulate existing parsers
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PCFGs incorporating different features

• For each category,  stipulate the set of features to be incorporated into the 
PCFG.

! allows PCFGs of various granularity to be built

! empirically evaluate the utility of various features

13

13

Tejaswini Deoskar

Feature - Grammar development
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• Example of Auxiliary construction 

• Adding constraints requires checking treebank conventions 
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Feature - Grammar development
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GPSG-like Valence
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• Example of Auxiliary construction 

• Adding constraints requires checking treebank conventions 

VP

VB        VP
   is              

VP { }    ->  VB { Val=aux } VP { }

VP {Vform = fin } ->  VB { Val=aux } VP { }

VP {Vform=fin; Slash= sl} -> VB {Val=aux} VP {Slash =sl}
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Slash feature for A-bar dependencies
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GPSG-like Slash feature for A-bar 
dependencies

15

Tejaswini Deoskar

Slash feature for A-bar dependencies

15

GPSG-like Slash feature for A-bar 
dependencies

15



Tejaswini Deoskar

Slash feature for A-bar dependencies

15

VP {Slash = n} ->  VBD +T-NP+

GPSG-like Slash feature for A-bar 
dependencies

15

Tejaswini Deoskar

Slash feature for A-bar dependencies

15

VP {Slash = n} ->  VBD +T-NP+

GPSG-like Slash feature for A-bar 
dependencies

15

Tejaswini Deoskar

Slash feature for A-bar dependencies

15

VP {Slash = n} ->  VBD +T-NP+

   S {Slash = sl} -> 

           NP-SBJ  VP{Slash = sl}

GPSG-like Slash feature for A-bar 
dependencies

15

Tejaswini Deoskar

Slash feature for A-bar dependencies

15

VP {Slash = n} ->  VBD +T-NP+

   S {Slash = sl} -> 

           NP-SBJ  VP{Slash = sl}

GPSG-like Slash feature for A-bar 
dependencies

15



Tejaswini Deoskar

Slash feature for A-bar dependencies

15

VP {Slash = n} ->  VBD +T-NP+

   S {Slash = sl} -> 

           NP-SBJ  VP{Slash = sl}

   SBAR {Slash = sl} -> 

           +WH-NP+ S{Slash = sl}

GPSG-like Slash feature for A-bar 
dependencies
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Passive

16

A-dependencies like 
passive and raising are 
effectively lexicalised
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Lexical Features

• add information about tree-shape onto pre-terminal label of word

! For example: verbal valence  

! could also be done for any lexico-syntactic dependencies other than 
valence

! e.g. adverbial attachment to S, NP , VP nodes
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For open class words
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A control verb
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VP

VB.s.e.to

want

S.e.to

*NP* VP.to

TO

to

VP

communicate...

1

• basic valence is sub-classified further for S complements

set the economy moving again 
(non-empty subject and gerund)

wish to be a full time administrator
(empty subject, predicative)

persuade consumers to pay more than $14...

Total
81 frames
(without 

prepositions)
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Performance

• Treebank conversion 

Coverage:   > 98.5 %  of  Treebank trees

• Most ambiguities/failures due to remaining grammar bugs. 

• PCFG

! Labelled bracketing f-score:  86.8 % on Section 23 of the Penn Treebank

! Competitive performance for English 

• Best results for empty category detection ( 84.1 %)

20
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Lexical Entry for a verb in fine-grained PCFG
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named VBN 161 VBD 20 Original entry

New fine-grained entry
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Motivation for learning from unlabelled data
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attaches VBZ.np.-.-  1.0

attack NN  22 VBP.-.-.-   1.0 VB.n.-.-   3.0 VB.z.-.-  1.0

abandon

s

VBZ.n.-.-   2.0

abate VB.z.-.-    1.0

 Penn Treebank :  7450 verb types , 38% once, 14 % twice

Most  words have impoverished entries !!
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Learning from unlabelled data

! Expectation Maximization (EM)      (Dempster, et.al., 1977)

! good mathematical properties, convergence 

23

How?

EM
Initial Grammar

Model

Unlabeled data

Output
Grammar

Model

Treebank PCFG
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Learning from unlabelled data

• Constrain Unsupervised Model

! Frequency transformations                            Deoskar(2008, 2009)

! N copies of Labelled data + unlabelled data   (To appear (2011), with   
Mylonakis,  Sima’an ) 

• More general method but worse results

24

Challenge :  Unlabeled data tends to harm rather than help an already accurate
                 model
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Experimental Setup

• ~ 1 Million words from Penn Treebank 

• 4, 8, 12, 16  Million words of unlabeled text (Wall Street Journal , sentence 
length < 25 words)

• Evaluations by parsing held-out sentences from the Penn Treebank

! Task:  assigning correct valence to verbs that are unseen in the labeled 
data. 

• 118 novel verb types, 1200 tokens

• evaluated against the treebank tree

25
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4 M
words

8 M
words

12 M
words

16 M
words

Smoothed 
Treebank Model

29.86 29.86 29.86 29.86

Parsing 
Unlabeled Data 

Corpus

27.8 27.8 27.8 27.8

EM - based 
Method

27.08 25.89 25.18 24.7

% Error 
Reduction

9.31 12.76 15.67 17.5

Valence Detection for Novel Verbs

26

Valence Error Percentages for Novel Verbs

No verb specific 
information

p<0.0001
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Improved PP attachment
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Learning Curves
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Improvements in a variety of frame-types

30

Frame % Error 
Reduction

transitive 21.52

intransitive 11.36
NP PP-CLR 7.14

PP-CLR 25
SBAR 0

s.e.to (control) 25
PRT NP 12.5

NP PP-DIR 14.28
NP NP 11.11
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Other categories

31

!  Improvements in Noun valence (but impoverished frames)

! Improvements in  other lexico-syntactic dependencies:   Adverb 
attachment to sentential, nominal, verbal nodes
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Summary

32

32

Tejaswini Deoskar

Summary

32

• Framework

! allows easy annotation of Treebank trees with feature-structures

! compilation of PCFG grammars containing features

! Effort required is in development of a feature-contraint grammar

! PCFGs can be built containing various subsets of features
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• Framework

! allows easy annotation of Treebank trees with feature-structures

! compilation of PCFG grammars containing features

! Effort required is in development of a feature-contraint grammar

! PCFGs can be built containing various subsets of features

• Connect to much larger data : Possible to improve the distributions of these 
features from unlabelled data (at least for some features, like valence)

• Experiment with utility of various features for statistical grammar 
learning 
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Future Work

• Which features?

• Current grammar contains very few features: focus on features related to 
valence and constraining empty categories.

• Experiment with more features

! Finer divisions of clausal valence: S and SBAR

• Fine-grained Treebank grammars for other languages.
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Thank You!
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