

Properties of German PP-taking nouns

- Prepositions used with relational nouns form a small circumscribed set
- Choice of preposition
 - relatively fixed (compared to modifiers)
 - arbitrarv
 - Interesse für/an 'interest in' (lit.: interest for/at) vs. sich interessieren für/*an 'to be interested in' vs. interessiert an/*für 'interested in'
 - Lack of alternation implies semantic vacuousness
- Complements of nouns almost exclusively optional
- PP-complements syntactically almost indistinguishable from **PP-modifiers**
 - grammar-based learning techniques (Cholakov et al., 2008) unapplicable
- similarity to multi-word expression suggests
 - collocation-extraction approach

```
5
```

Berthold Crysmann Learning relational nouns from corpora

・ロト ・日ト ・日ト ・日ト ・日ト ・ ショー

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 通目 のへで

 Mining relational nouns:	almost a N	IWE extr	action problem Data Experiments	Data prepar Annotation Features	ation
		Abs.	frequency	Bigram	
	- 1		00550	TT	

1	99773	Umgang mit				
2	96612	Institut für				
3	86835	Höhe von				
4	85879	Zusammenhang mit				
5	84148	Mensch in				
6	77836	Suche nach				
7	77740	Jahr in				
8	76426	Blick auf				
9	75215	Zusammenarbeit mit				
10	73510	Voraussetzung für				
11	71589	Hinblick auf				
12	70744	Anspruch auf				
13	68652	Bezug auf				
14	60617	Form von				
15	60612	Reihe von				
Table: Top 15 noun–preposition bigrams						

Mining relational nouns: almost a MWE extraction problem Data Experiments

Data preparation Features

Data preparation

- Primary data: 1.6 billion word deWaC corpus (Baroni and Kilgariff, 2006), POS-tagged and lemmatised by TreeTagger (Schmid, 1995)
- Extraction of noun-preposition bigram and unigram counts
 - Using strict adjacency (non-adjacent complements highly marked)
 - Counts are lemma-based: motivated by acquisition task (lemma-based HPSG lexicon)
 - Removal of counts with noun frequency < 10
- Extraction of bigram frequency best-lists, a standard heuristic in collocation extraction (Krenn and Evert, 2001)
 - Frequency-based ranking highly suitable to the task
 - Ensures availability of sufficient positive training data

```
Berthold Crysmann
```

Mining relational nouns: almost a MWE extraction problem Data

Data preparatio Annotation Experiments

Learning relational nouns from corpora

Annotation

6

8

- Manual annotation of frequency best list
 - Initial annotation by 2 human annotators with basic training in linguistics (A1, A2): 2500 items
 - Second annotation by third-year student (A3): 8500 items
 - Interannotator agreement (top 2500) at .82 (A1/A3) and .84 (A2/A3)
 - Final accommodation step
- Annotation guidelines:
 - deverbal noun?
 - affectedness of preposition's complement?
 - paradigmatic interchangeability of preposition?
 - only possessor reading?
- 36% of annotated data classified as relational (3029/8268):
- clear bias for non-relational nouns

Learning relational nouns from corpora

Features

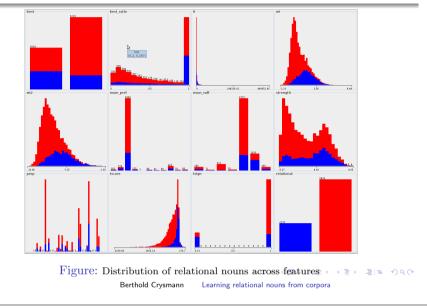
Features I

- Linguistic (string) features
 - Preposition
 - Noun suffix common derivational suffixes, like -tion, -ung etc.
 - Noun prefix common *verbal* prefixes, hinting at deverbal nature
- Association measures
 - Mutual information (MI; Church and Hanks, 1990)
 - MI² (variant of MI that does not overestimate bigrams with low marginal probabilities; Daille, 1994)
 - Fisher's t-score (Krenn, 2000; Krenn and Evert, 2001; Evert and Krenn, 2001)
 - Association strength (Smadja, 1993)
 - Likelihood ratio (Dunning, 1993)
 - Best/best ratio: most frequent preposition given noun
 - Berthold Crysmann Learning relational nouns from corpora

Mining relational nouns: almost a MWE extraction problem Data Features Experiments Trade-offs

Evaluation

9


- Experiments carried out over a set of 8268 annotated noun-preposition pairs (bigrams)
- All test runs performed using WEKA machine learning platform (Bouckaert et al., 2010)
 - decision trees
 - Bayesian classifiers
 - support vector machines
 - logistic regression

• Evaluation using 10-fold cross-validation

Mining relational nouns: almost a MWE extraction problem Data Experiments

Annotatio Features

Features II

Mining relational nouns: almost a MWE extraction problem Learners Data

Features Experiments Trade-off

Performance of different learners

	Prec.	Rec.	F-meas.
ADTree	73	63.2	67.8
BFTree	79.7	55.9	65.7
DecisionStump	57.6	75.7	65.4
FT	75.8	62.4	68.5
J48	75.9	62.4	68.5
J48graft	76.1	62.6	68.7
LADTree	74.8	60.0	66.6
LMT	75.7	63.0	68.8
NBTree	75.2	64.2	69.2
RandomForest	70.0	66.7	68.3
RandomTree	64.4	64.7	64.5
REPTree	74.7	64.0	69.0
Naive Bayes	67.6	61.4	64.3
Bayes Net	61.8	70.0	65.7
SMO	76.9	63.6	69.6
Logistic	76.0	64.8	69.9
Bagging (RepTree)	77.0	64.4	70.2
Voting (maj)	75.5	67.1	71.0
Voting (av)	74.3	67.3	70.6

シック・ 西川川 スポット 本語 > 「 日 > 」

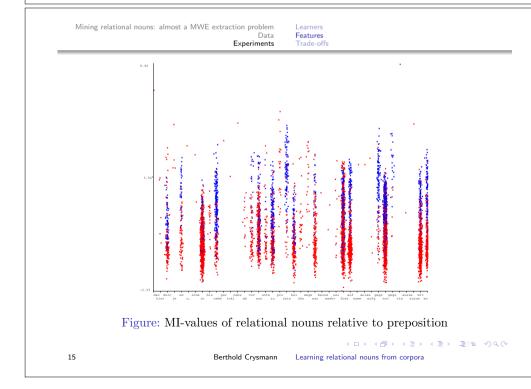
Berthold Crysmann Learning relational nouns from corpora

10

シック・ 西川川 スポット 本語 マート

Berthold Crysmann Learning relational nouns from corpora 13

Individual association measures (AM)


- Mutual information and t-score show good individual performance, confirming results from collocation extraction
- Association strength and best feature useless on their own

	NBTree			Logistic		
	Prec.	Rec.	F-meas.	Prec.	Rec.	F-meas.
All (+form)	75.2	64.2	69.2	76	64.8	69.9
MI	63.1	65.6	64.3	68.6	47.3	56.0
MI2	65.0	46.3	54.1	67.4	40.8	50.8
LR	69.1	15.9	25.8	71.9	11.5	19.8
T-score	64.6	57.4	60.8	65.8	58.3	61.8
Strength	0	0	0	49.4	3.7	6.8
Best	0	0	0	0	0	0
Best-Ratio	0	0	0	0	0	0
All AM (-form)	67.9	48.2	56.4	68.1	50.3	57.9

Table: Classification by a single association metric

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Berthold Crysmann Learning relational nouns from corpora

14

Sampling by preposition/noun type

- Addition of form features substantially increases performance of all association measures
- MI and t-score get close to their maximal values

	NBTree			Logistic			
	Prec. Rec. F-meas.			Prec.	$\operatorname{Rec.}$	F-meas.	
All	75.2	64.2	69.2	76	64.8	69.9	
MI	78.5	60.4	68.3	76.3	64.0	69.6	
MI2	75.2	58.5	65.8	75.2	60.2	66.9	
LR	75.2	53.3	62.4	71.5	52.6	60.6	
T-score	76.5	62.2	68.6	75.9	62.0	68.3	
Strength	75.5	54.8	63.5	74.8	53.1	62.1	
Best	73.1	51.5	60.4	75.2	48.8	59.2	
Best-Ratio	75.6	55.3	63.9	76.2	51.9	61.7	
No AM	67.7	49.1	56.9	0.703	46.8	56.2	

Table: Classification by a single association metric + form features

 (preposition, noun prefix, noun suffix)

 Berthold Crysmann

 Learning relational nouns from corpora

Mining relational nouns: almost a MWE extractio	n problem Learners Data Features speriments Trade-offs		
2.45 3.35 -2.33 et hat	e e e e e e e e e e e e e e e e e e e	· · · · · · · · · · · · · · · · · · ·	
Figure: MI-values of r	elational nouns r	elative to noun suf	fix
16 Berthold	l Crysmann Learning rel		≣► ≣I= එ¢@

Contribution of individual features

- Importance of suffix and preposition features evident in combined classifier: clear drop in precision and recall
- Omission of prefix heuristic displays a much weaker effect

	NBTree			Logistic		
	Prec.	Rec.	F-meas.	Prec.	Rec.	F-meas.
All	75.2	64.2	69.2	76	64.8	69.9
-T-score (signif.)	75.4	63.5	68.9	76.1	65.0	70.1
-T-score (abs)	75.6	62.3	68.3	76.3	63.3	69.2
-MI	75.9	63.7	69.3	75.1	64.8	69.6
$-MI^2$	74.4	63.7	68.6	76.0	64.2	69.6
-LR	74.9	63.9	68.9	75.8	65.1	70.1
-Strength	74.7	63.5	68.7	76.1	65.0	70.1
-Best	75.3	63.1	68.7	76.0	64.6	69.8
-Best-Ratio	75.1	63.9	69.1	76.0	64.8	69.9
-Prep	68.7	64.0	66.3	72.3	60.6	65.9
-Noun-Prefix	74.9	63.7	68.9	76.0	64.5	69.7
-Noun-Suffix	73.7	60.9	66.7	73.5	60.4	66.3

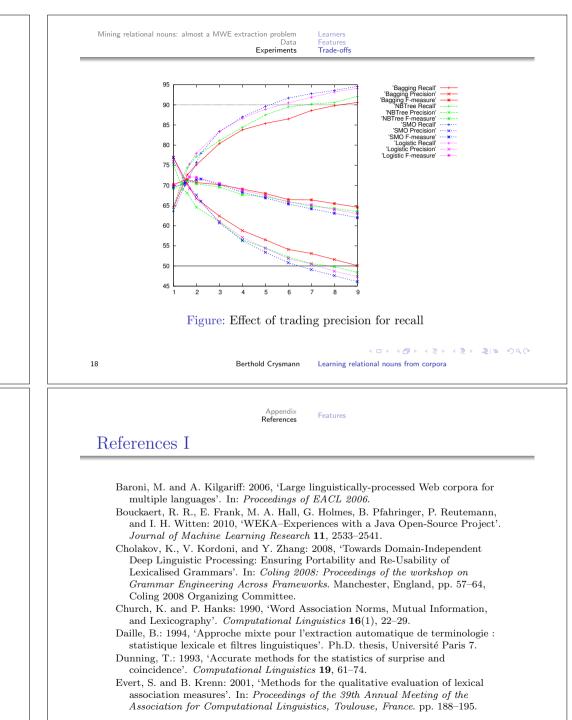
Table: Effects of leaving one feature out

うせん 非正 へばや 人間を 人間を くしゃ

Learning relational nouns from corpora

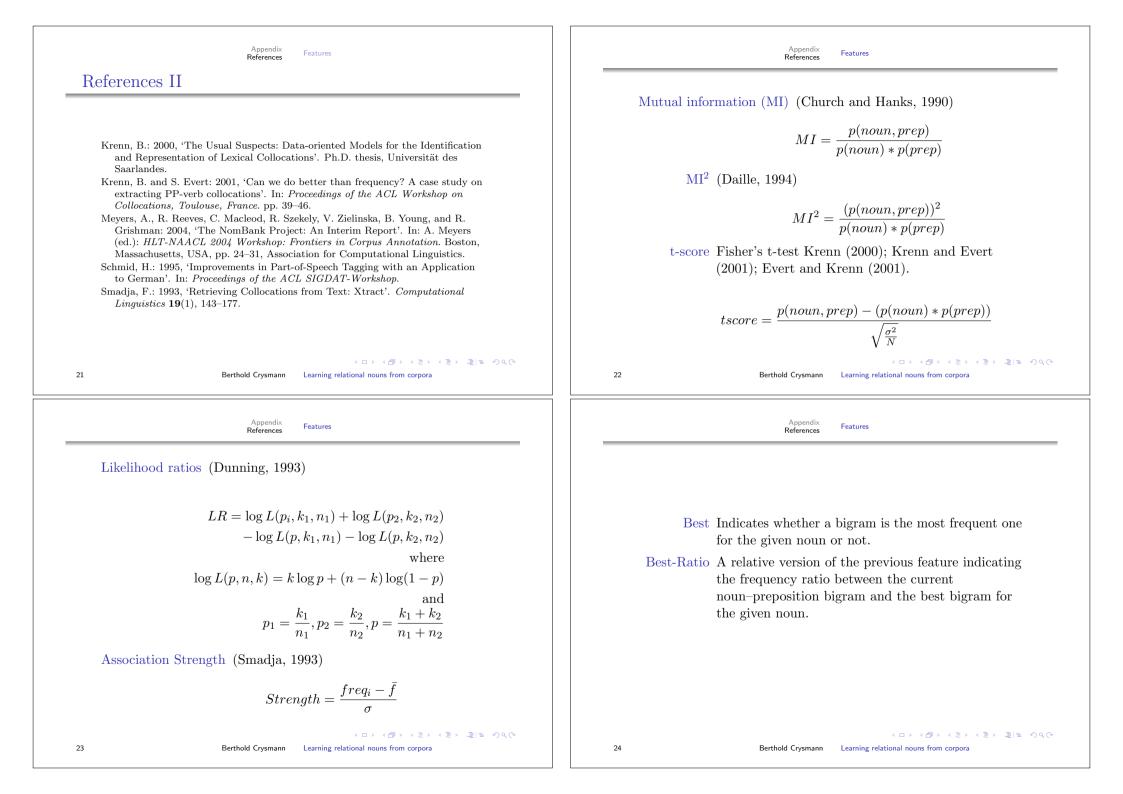
Mining relational nouns:	almost a MWE extraction problem	Learners Features
	Data	reatures

Experiments Trade-offs


Conclusion

17

- Classifiers
 - Bayesian classifiers suboptimal


Berthold Crysmann

- Best decision tree classifiers show competitive performance to support vector machines (SMO) and logistic regression
- Features
 - Mutual information and t-scores confirmed as best individual association measures
 - Corpus statistics on their own insufficient
 - Information about preposition and derivational noun suffixes crucially improves performance of all association metrics
 - Association measures with low predictive power still useful in combination
- Satisfactory overall performance
 - confirms suitability of collocation extraction approach
 - best learner can detect over 90% of relational nouns, with a precision above 50%, reducing the annotation effort by half _ ____

20

▲□▶ < □▶ < □▶ < □▶ < □▶ < □▶

