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Abstract

In the first part of this dissertation, the extremal theory of graph minors is
developed as follows. The results of Bollobas, Catlin and Erdos showing how
large a complete minor is found in a random graph are extended to showing
how large a complete bipartite K, minor is found for given ¢, even up to ¢t =
n—logn. The Hadwiger number of random graphs in a model where different
parts of the graph have different edge probabilities is determined almost
surely. For a class of dense graphs generalising that of complete bipartite
graphs, ‘blown-up’ graphs, the extremal problem in terms of average degree is
solved asymptotically, generalising results of Thomason, the extremal graphs
being random graphs, and it is shown how a restricted class of blown-up
graphs are ‘critical’ for this problem. For K5, minors, the extremal problem
is solved exactly (rather than asymptotically) with the exact best possible
number of edges to force such a minor, the methods being substantially
different from those for denser minors. For complete minors, it is shown that
the extremal graphs are quasi-random in the sense of Chung, Graham and
Wilson, or essentially disjoint unions of quasi-random graphs, answering a
question of Sés. The extremal problem in terms of connectivity rather than
average degree is also considered, with results that are significantly stronger
than those in terms of average degree in the cases where they apply.

In the second part of this dissertation, extremal problems relating to
directed graphs are considered. The minimum number of monotone sub-
sequences of length k + 1 in a permutation of length n is considered; the
extremal permutations are determined exactly for £ = 2, and for £ > 2 and
n > k(2k — 1) subject to an additional constraint, the number of extremal
permutations being related to the Catalan numbers.



Introduction

Extremal graph theory, which essentially started with the work of Turdn [68],
concerns in its greatest generality the extremal values of some parameter in
some class of graphs, and the nature of those graphs that attain the extremal
values. A commonly considered parameter is that of the number of edges,
or equivalently the average degree, and we may ask for the maximum aver-
age degree of graphs which do not contain some given substructure. Where
the substructure is a complete subgraph, the exact extremal result was de-
termined by Turdn [68]; where it is some other nonbipartite subgraph, the
extremal result is the Erdds-Stone-Simonovits theorem [16, 15].

In the first part of this dissertation, we develop the extremal theory of
graph minors. The extremal problem for complete minors in terms of average
degree was considered by Mader [36], and a succession of authors refined
the bounds until the exact extremal result was found by Thomason [64].
Thomason provided an explicit form of the extremal graphs in terms of quasi-
random [9] graphs, but the outline argument given to show that this is the
extremal form is flawed. In Chapter|5 we answer a more general question of
Sés about the form of graphs without large complete minors, and in so doing
we correct and complete Thomason’s argument.

In Chapter [3, we extend this extremal theory to cover a wider class of

dense minors. The aim of this work is to find a structural property of H that
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determines the extremal function, analogous to the role of the chromatic
number in the Erdés-Stone-Simonovits theorem; to some extent we succeed
(for example, for dense regular graphs, and for almost all graphs), although
without an exact characterisation for all cases; in joint work with Andrew
Thomason, this is taken further in [41]. Because the extremal graphs are
often random graphs, it is important to consider when given minors occur in
random graphs, and we do this in Chapter 2, extending the work of Bollobas,
Catlin and Erd6s [2] on complete graphs as minors of random graphs.

Just as the extremal problems for bipartite subgraphs are less well un-
derstood than those for other subgraphs, the extremal problems for sparse
minors are less well understood than those for dense minors. In Chapter 2 we
consider in detail when complete bipartite graphs occur as minors of random
graphs, and in this case we can obtain precise results that cover very sparse
graphs as well as dense graphs. For dense minors, the graphs of maximum
average degree that do not have a given minor turn out to be related to ran-
dom graphs, but this does not happen for sparse minors. The specific case
of K,; minors, where s is fixed, is considered in Chapter 4, where a precise
answer to the extremal problem is found for the case s = 2; there, provided
t is sufficiently large, an average degree of ¢ +1 forces a K3, minor, but there
are graphs with any smaller average degree and no K5; minor.

Extremal problems for graph minors can, of course, be considered in terms
of parameters other than the average degree. In Chapter |6, we consider
the extremal problem for complete minors in terms of the connectivity, and
obtain partial results that are better than those in terms of average degree
in certain cases.

In the second part of this dissertation, we consider some other extremal

problems relating to directed graphs. In Chapter |8, we consider briefly two
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long unsolved simple problems which seem to be related to each other, and
give another conjecture which is also very simple and appears to be related to
those problems. In Chapter|9, we consider an extremal problem related to the
result on monotone subsequences of Erdés and Szekeres [17]. This problem,
though not at first sight a problem relating to graphs, can be expressed as a
problem on tournaments in a way which shows its natural symmetry, and this
form of the problem allows a result in graph theory to be applied to show that
certain sequences are extremal, and with a little more effort to give a complete
characterisation of the extremal sequences for subsequences of length 3. A
conjectured characterisation is also given for extremal subsequences of greater
length, provided that the sequence in which subsequences are to be found is
sufficiently long, and this is proved correct for a constrained version of the
problem.

I would like to thank Andrew Thomason for his helpful comments and
suggestions about the work that has gone into this dissertation. Much of
Section 3.3 (dealing with the question of which graphs are critical when
finding dense minors in both random and more general graphs) represents

joint work with Andrew Thomason.



Notation

In general the terminology and notation of Bollobés [1] are used in this disser-
tation. Particular points to note are that graphs are simple and undirected
unless stated otherwise; they are also finite throughout this dissertation. We
write H < G or G = H to denote that H is a minor of G. We use P for
probability and E for expectation. We write Bi(n, p) for the binomial distri-
bution that is the sum of n independent random variables, each of which is 1
with probability p and 0 with probability 1 — p. We use the term oriented
graph for an orientation of an undirected graph; in particular, an oriented
graph may not have both edges + — y and y — x. In a directed graph,
I't(v) denotes the out-neighbourhood of v and '~ (v) the in-neighbourhood.
The most commonly used random graph model is that where each edge is
independent and has the same probability of being present; where that prob-
ability is p, and the graph is of order n, we write this G(n,p). We write C

for subsets, where equality may occur.

10
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Graph Minors
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Chapter 1

Introduction to graph minors

We recall the standard definition of a minor:

Definition 1.1 Let G be a graph. A minor or subcontraction of G is a
graph H that can be obtained from G by a series of vertexr and edge deletions
and edge contractions. Equivalently, it is a graph H such that there exist
disjoint subsets W,, C V(G), foru € V(H), such that all GIW,] are connected
and, for all wv € E(H), there is an edge in G between W, and W,. This

relation is written H < G.

Graphs which do not have some given minor, or which do not have any
minor in some given set of graphs, have been studied and characterised in
many ways. A major part of the theory of graph minors is in the series of
papers by Robertson and Seymour [42, 43, /44,145,146, 47,148,149, 50, 51, 52,53,
54,55, 56, 57], which aims towards proving Wagner’s conjecture that, in any
infinite set of finite graphs, some one is a minor of some other. In the course of
this series of papers, various results are proved about the structure of graphs
without a given minor, in terms of their concept of ‘tree-width’. They also

prove [49] a version of Kuratowski’s theorem [33] for general surfaces, that

12



CHAPTER 1. INTRODUCTION TO GRAPH MINORS 13

for any surface there is a finite set of excluded minors, such that a graph can
be drawn in that surface if and only if it does not have any of the excluded
minors. (A simpler proof using the Robertson-Seymour theory has since
been given by Thomassen [67]. The parts of the Robertson-Seymour theory
used in this proof were further simplified by Diestel, Jensen, Gorbunov and
Thomassen [13].)

Extremal problems in graph minors, concerning parameters other than
tree-width, have also long been considered. Hadwiger [21] conjectured that

X(G) > k implies that K} < G. The following definition is standard:

Definition 1.2 The Hadwiger number of a graph G is the largest integer k
such that K, < G.

Mader [36] showed that a sufficiently large average degree forces a K; mi-
nor, which leads naturally to the question of what average degree is required.
Bollobds, Catlin and Erdds [2] determined what order of complete minor oc-
curs in a random graph, n/,/log;,,n for a G(n,1 — ¢) random graph; this
showed Hadwiger’s conjecture to hold for random graphs, and Fernandez
de la Vega [18] observed that this showed that random graphs are good ex-
amples of graphs with high average degree but no large complete minor, and
that it implied that the necessary average degree to force a K; minor was not
just a linear function of ¢. Kostochka [29, 30] showed that random graphs
are within a constant factor of being optimal. The exact extremal function
was then determined by Thomason [64]: the average degree that forces a
K; minor is (1+ o(1))aty/Togt for an explicitly determined constant . The
random graphs achieving this extremum are graphs of a certain order and a
fixed density A.

Thomason [64] described the extremal graphs in terms of graphs that

are quasi-random in the sense of Chung, Graham and Wilson [9] or Thoma-
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son [61], with an outline proof. That outline proof turns out to be flawed
where it claims to show quasi-randomness, and I fill that gap in [39] and
Chapter [5. Sés asked a more general question: sometimes quasi-random
graphs contain larger minors than the corresponding random graphs (exam-
ples are given by Thomason [63]; and indeed the problem, raised by Mader,
of explicitly presenting graphs without large complete minors remains open),
but might the converse be true? That is, if a graph of order n and density p
had no complete minor larger than that in a random graph G(n,p), would
the graph then necessarily be quasi-random? This is answered in Chapter 5.

Bollobés, Catlin and Erdds [2] only give their proofs for graphs G(n, %),
although they note that the results may straightforwardly be extended to
G(n, p) for any p; and their results are only for complete minors, as are those
of Thomason [64], not for other minors H. In Chapter 2/ and Chapter 3] we
consider when more general graphs H occur as minors of random graphs. In
particular, we find that large classes of graphs H (which include almost all
graphs, and dense regular graphs) occur as minors in random graphs G just
when complete graphs K|y do. Graphs that are easier to find as minors in
random graphs than complete graphs are must possess what we call a tail. In
Chapter [3| we consider the corresponding extremal problem for more general
dense graphs H (although not for all such H), showing the same relation
to random graphs as was found by Thomason [64] for complete minors: the
extremum is determined by random graphs of a certain order, and constant
density A. In joint work with Andrew Thomason [41], this is extended to
wider classes of graphs, including some graphs that are sparse but not too

t1*7 edges for positive 7).

sparse (having
Most of these results require H to be sufficiently large for its density, al-

though in Chapter 2 we consider sparse complete bipartite minors of random
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graphs. One can also consider extremal problems for sparse minors H; in
many such cases where H is very sparse, the extremal graphs are no longer
random. We do not have a general theory for these graphs, but in Chapter 4/
we consider the case where H is K, where s is fixed and ¢ is large, and find
a precise result when s = 2.

Extremal problems for graph minors can also be considered in terms of
parameters other than the average degree. (Problems in terms of girth have
been considered by Thomassen [66] and Kiithn and Osthus [32]. Kiihn [31]
showed that large ‘external connectivity’ forces a large complete minor.) For
given ¢, the extremal graphs (in terms of average degree) of large order with
no K; minor are made of dense quasi-random components joined by a few
edges. If we require a certain connectivity, rather than a certain average
degree, such graphs can no longer occur. Thus, we might expect that, for
large n, a connectivity smaller than the O (ty/Iogt) average degree would
suffice to force a K; minor. In Chapter 6/ we consider this problem; in a
specific case, we find that the necessary connectivity is linear in the order
of the minor required. A stronger conjecture about the specific case of 6-

connected graphs with no K4 minor has been made by Jgrgensen [28].



Chapter 2

Minors in random graphs

2.1 Introduction

Bollobés, Catlin and Erdds [2] considered the problem of determining the
Hadwiger number of a G(n, %) random graph, showing that it is almost surely
(1+o(1))n v/log,n. They did not state their results and proof for more
general G(n,p) graphs, though they noted that they could straightforwardly
be extended; for constant p, the Hadwiger number will almost surely be
(1+0o(1))n \/1ogy,n, for ¢ = 1—p. (In fact they gave a more precise result
for p = %, bounding the o(1) term; in this chapter we only attempt to find
results to within a 1 4 o(1) factor.) The problem was also considered by
McDiarmid [35].

It is natural to consider what other minors might be found in random
graphs. After complete minors, the next simplest to consider are complete
bipartite minors, which we consider in Section 2.2. If we fix the ratio §: (1 —
(3) of the parts of the minor, and ask for how large a t a K (1) minor can be

found, it turns out that ¢ = (1+0(1))n/\/4ﬁ(1 — 3)log, ;, n almost surely; in

particular, a Kjy/; /2 minor is not significantly easier to find than a K; minor.

16
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1

Further, if 8 < 7, it turns out that we can find a Ky + K(1_g); minor just
as easily as a K (1_g)y; one.

These questions can be extended in two directions. First, we can ask
how large a complete bipartite minor can be found in a random graph if the
ratio of the parts of the minor is not fixed, and one part is much larger than
the other; that is, given t, we can ask for the largest s such that G has a
K+ minor. In Section we see how an exact answer can be given to this,
even up to t =n — logn.

Second, we can look at more general minors than complete bipartite ones.
We already saw how in some cases a larger minor is just as easy to find
in a random graph as a smaller one; random graphs have K,/ ;> minors
essentially just when they have K; minors. The notion of bipartite and
multipartite graphs can be extended to a notion of blown-up graphs. These
are discussed in Section in the next chapter because the main use of the
methods and results relating to these graphs is in considering questions of
when a more general dense graph can be found as a minor, for which in many
cases the extremal graphs turn out to be random.

All this work deals with the G(n,p) random graph model. Other random
graph models can also be of interest. In Chapter |5/ we are interested in
graphs that are non-quasi-random; that is, where the density in different
parts of the graph differs. In preparation for this, in Section we consider
random graphs where the edges are independent but the edge probabilities
vary; given a fixed vertex partition (X,Y), the edge probabilities within X,
within Y and between X and Y differ (but are fixed within each of these
three parts). We determine the Hadwiger number of such graphs (almost

surely).
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2.2 Complete bipartite minors

In this section, we fix some edge probability p, with 0 < p < 1, write as usual
q = 1 — p, and consider the question: for given ¢ (which may be a function
of n), what is the largest s such that K,; < G(n,p)? We also consider the
related question: what is the largest s for which K+ K; < G(n,p)? For both
of these questions, we find the value that s holds almost surely, to within a
o(1) term. Where t > n/2,/Tog, , n, the answers to both questions are (to
within this o(1) term) the same.

For a graph G, and a positive integer ¢, define s;(G) to be the largest
positive integer s such that K, is a minor of G, with s,(G) = 0 if there is
no such minor for any positive s. Define s; (G) similarly where we require
the minor to be K, + K.

For positive integers n, t and real 0 < ¢ < 1, put

0(t) = Ln/t; 1J 7

Ca(t) (n — €, (0)t)
log; ), 1 ’

It will turn out that ¢,(¢) is the optimal order of the parts of the minor

and put

Snyq(t) =

on the t-side, with those on the s-side being of order (log;,,n)/¢,(t). The
value of /,(t) arises from maximising (n — ¢t)¢ for integer ¢. For large ¢
(and so small s) this means that there are points at which the distribution
of vertices of G between the parts of the minor corresponding to each half of
the bipartite graph jumps; the number of vertices in each part of the t-side of
the minor goes up, and the number in each part of the s-side goes down. If
t = o(n), however, the results can be expressed more simply, as the integral

parts need no longer be taken; if w > 1 and we have t = wn/2,/ log; /, n then

s =n/2w,/log;, n.
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In general, we claim that, for fixed ¢ = 1 — p, 5,(G(n,p)) = (snq(t) +
O(1)) (1 + o(1)) = s (G(n,p)) almost surely as n tends to infinity, for any
t = t, such that n/2,/log, ,n <t, <n. The O(1) term is +1 when we are
showing that larger minors are not present, and —1 when we are showing
that minors of the required size are present; it is only relevant when ¢ is
very near n and there is uncertainty as to the exact number of parts that
can be found on the s-side. The precise meaning of the claim is given in
the following theorems. Theorem 2.1 says that the minor is no larger than

claimed; Theorem 2.2 says that the minor is no smaller.

Theorem 2.1 Let 0 < p < 1 be fized, and put ¢ =1 —p. Let 0 < € <
be given. Let t, be such that n/2w/10g1/qn <t, <n foralln. Puts, =
((1 +€) (sn,q(tn) + 1)} Then, for all sufficiently large n, a random graph

Ut

G(n,p) contains a Ky, 5, minor with probability at most €.

Proof If G = G(n,p) has such a minor, the vertices may be partitioned

into ¢, sets T, ..., T3, and s, sets S1, ..., S, with an edge between each
T; and each S;. We say a partition of the vertices of G into T3, ..., T},
Si, ..., Ss, is permissible if it has such edges between 7; and S; for all

1<i<t, 1< 75 <s, ForG tohave such a minor, it must have a
permissible partition; note that there are at most n™ possible partitions.
Let the probability that a given partition (of the fixed vertex set of or-

der n, while G is random) is permissible be P. We then have

P= H (1 — q|Tz‘HSj|) < exp (_ qusH).
1,] i,5

The right hand side of this inequality is maximised when the sum is min-
imised. The sum will be minimised for some choice of the |T;| and |S;| adding

to n; considering holding all but |7}, | and |T;,| fixed, and differentiating, we
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see that the sum is minimised when all the |T;| are as nearly equal to each
other as possible, and similarly all the |S;| are as nearly equal to each other
as possible.

Applying the AM-GM inequality, we conclude the minimum to be when
YT = >0 |Si| = n/2, though this will not be achieved in certain cases
because the sets must have integer sizes. We shall now consider three cases,

in the first of which the approximation given by AM-GM shall suffice.

Case 1: Let w(n) > 1 be such that w(n) — oo as n — oo. Consider

those t,, with ¢,, < n/w(n). We then have ¢,(t,) = n/2t, + o(1), and so

Spq(tn) = (1 + 0(1))(n2/4tn logy /4 n) > (1 + 0(1)) (nw(n)/éllogl/q n) :
sn=(140(1)) (1 + €)spq(tn).
We then have s,t, = (14 0(1))(1 + €)(n?/4log, , n).

A given partition is permissible with probability at most

exXp | — tnann2/4tnsn]

= exp [(—(1+ e)n’/dlog, ,n) n~VIHIHHN(1 4 o(1))]

= exp [—n? VT (1 4 ) (1 +0(1)) /4 log, ;1] -

There are at most n™ partitions, so the probability that any one of them

is permissible is at most
exp [nlogn — (14 o(1)) (1 + e)n® /0+9+W /4]0g, | n]

which tends to zero as n — 00, so is less than € for n sufficiently large. Thus

the result holds in Case 1.
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Case 2: Now consider those ¢, > n/iloglogn. We have 1 < ,,(t,) <
log log n. Suppose also that ¢, < n(1—€?). Suppose that the |T;| and |S;| are
chosen to maximise the probability that a partition is permissible. Observe
that by our choice of ¢,,, we have s,, > e2n/log1/q n.

Suppose the t,, sets T; contain a total of rn vertices. Let those sets have
orders m and m + 1, where m + 1 < loglogn; if all T; have the same order,
let that order be m. Say un/m of the sets have order m, and vn/(m + 1) of
the sets have order m + 1, where u +v =r. Put (1 —r)n/s, = wlog, , n.

The probability that a given T} has edges to all S; is

H (1 _ qITiHSjI) < exp {_ Z qsz'ISjll
j j
< exp [—an‘Tilwlogl/qn]

= exp [—snn’ww]

using AM-GM. The probability that any partition is permissible is thus at

most
exp [nlogn — s, ((u/m)n* ™™ + (v/(m + 1))p'~=" )] .

Suppose this probability is at least € for some arbitrarily large n; then in

particular we have, for all § > 0,
sn ((u/m)n' =" + (v/(m + 1))n1_w(m+1)) < n'to
for some arbitrarily large n; whence, given our lower bound on s,
((u/m)n' =™ 4+ (v/(m + 1))n1_w(m+1)) <n’

again for arbitrarily large n. (The value § = e* will be sufficiently small for
what follows.)
If w < (1/(m+1))(1 — €?), this cannot hold; so 1/w < (1 + 2¢?)(m + 1).

Also, if u/m > 1/logn (say), then we must also have w > (1/m)(1 — €?);
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so 1/w < (1 + 26*)m. Clearly we have m < [rn/t,]. If u/m < 1/logn,
then we have rn > n/logn + (t, — n/logn)(m + 1), so rn/t, > (m + 1) —
mn/t,logn. Thus, for arbitrarily large n, in either case we have 1/w <
(14 2€) [rn/t, +€*]. Thus s, < ((1 — r)n/logy n)(1+ 2€%) [rn/t, + €],
Put ¢ = |rn/t, +€*]; so rn > {t, — e*t, > lt, — e¢'n. Thus we have
arbitrarily large n with s, < n(l 4 €* — £t,/n)(1 4 2¢*){/log, ;, n. The right
hand side of this is maximal, varying ¢ over the reals, for £ = (1 + ¢*)n/2t,.
For ¢ an integer, this is maximal at the nearest integer value, and we have
1+e' —0t,/n < (14 €)1 — lt,/n) (the extremal case being when ¢, =
(1 —=¢€*)n). Thus, s, < (1+ 5¢*)n(1 — {t,/n)l/log, ,, n; and for integer £ this
is maximised for ¢ = £,(t,). But since ¢ < £, we have 1+ 5¢* < 1 +¢,

contradicting our original choice of s,.

Case 3: Finally, suppose t, > n(l — ¢*). Say n —t, = (3n, where
B < €2. Thus at least n(1 — 23) of the T; are of order 1. If some S; has
order wlog,/, n, the probability a given T; of order 1 has an edge to it is
1—n"" < exp(—n~"); so all T; have edges to it with probability at most
exp(—(1 — 26)n'~"). We are given that
sn > (1+¢€) (14 (Bn/log, ), n)) -

If 7 of the S; have order at most (1 — ¢/2)log; , n, then
(sn = 7)(1 = €/2)logy ,n < fn,
SO
(sn — 1) < Bn/(1 —€/2)log,/,n
whence
ro > sy —On/(1—¢€/2)logy,n

> 1+ (e/3)Bn/logy ,n.
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Thus, the probability that a given partition is permissible is at most

exp [~ (¢/3)3(1 — 20)n" /% log, yn — (1~ 28)n/?]

There are at most n**" possible partitions in which at least (1 — 23)n
parts are of order 1. Thus the probability that any partition is permissible

1s at most

exp [46nlogn — (¢/3)3(1 — 28)n**/*/log, j,n — (1 — 28)n/?] .

For n sufficiently large this is less than e (independently of 3). O
Theorem 2.2 Let 0 < p < 1 be fizxed, ¢ = 1 —p. Let 0 < € < % be
given. Let t, be such that n/21/10g1/qn < t, <mn foralln. Put s, =
L(l —€) (smq(tn) — 1)J Then, for all sufficiently large n, a random graph
G(n,p) contains a K, + K;, minor with probability at least 1 — e.

Proof Fix n and put ¢ = £,(t,). Put k = [(1+¢€)(log,,,n)/{]. Then
there are enough vertices in the graph to fit ¢, components of order ¢ and
(1 + €*)s,, components of order k; we claim that these components can be
chosen to be connected, and, after a few of the components of order k are
removed if necessary, leaving at least s, of them, with an edge between each
component of order ¢ and each component of order k, and an edge between
each pair of components of order k (so we have our minor) with probability
at least 1 —e.

Choose first at random the ¢,¢ vertices of one side; our T; shall be chosen
from these vertices, and the S; from the remaining vertices. We shall find,
within each side, our connected subgraphs, considering only the vertices of
that side. When that is done, the probability that a given pair (S;,7}) has

an edge between them is 1 — ¢" > 1 — ¢U+9%814" = 1 — p=1=¢ Say a pair
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is bad if it has no such edge. Thus the expected number of bad pairs is at
most ¢, (1 + €*)s,n ' < (1 + €?)s,n"¢, so the probability that more than
€?s,/2 pairs are bad does not exceed 2(1 + ¢ 2)n~° which is less than ¢/6
for n sufficiently large in terms of e. Similarly, say that a pair (S5;, 5;), with
distinguished vertices u € S; and v € S, is bad if there is no edge between
S; —u and S; — v; such a pair has an edge between them with probability
1—¢#®D* > 1 — " (since k > (1+ €)¢ by the lower bound on t,,), so again
the probability that more than e%s, /2 pairs are bad is less than €/6 for n
sufficiently large.

It now remains to find our connected subgraphs (with, for each side, a
probability of at most €/3 of failing to find them on that side). We need to
consider two cases.

First, suppose t, > n/3, so that £ = 1. The subgraphs of order 1 are
trivially connected. The probability that one of the subgraphs of order &
(chosen at random) is not connected is approximately the probability that it
has an isolated vertex, which is not more than (1 + ¢)(log; ,, n)n~'"¢ so the
probability than any of these subgraphs is disconnected is no more than n=°
which is less than €/3 for n large.

Now suppose t, < n/3. We wish to find connected subgraphs from each
of the two chosen sets of vertices. We have enough room for one side to have
(1 + €%/4)t,¢ vertices and the other to have (1 + €2)s,k vertices.

Thus, suppose we have ¢m(1 + 9) vertices, where 2 < ¢ < logn is the
order of the components we wish to find, § = €*/4, and m > 2n/3log, /, n
is the number of such components we wish to find. It will suffice for the
probability that such components can be found to be at least 1 — ¢/3.

Let the set of vertices be X, and let T" be a randomly chosen set of

m vertices of X. Put W = X \ T. We wish to find m vertex-disjoint stars of
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order ¢ in X, with centres the vertices of T. If X is the set of vertices from
which we choose our S;, then we make T be the distinguished vertices in
the definition of bad pairs above; and finding the stars is independent of the
edges within X \ 7', so that the determination of probabilities of bad pairs is
valid.

If there are no such stars, then by a trivial corollary of Hall’s theorem [22]
there is a set A C T with less than (¢—1)|A| neighbours in W. Write |A| = a.
The probability that a given vertex in W is joined to no vertex of A is ¢%, so
the probability that A has less than (¢ — 1)a neighbours in W is at most

Z (m(£(1 +0) — 1))qa(m(z(1+5)—1)—u)

u
u<({—1)a

< (0= 1)an!t~YaegemEd+o)—1)=(t=1)a)

néaqam((l(l-l-é)—l)—(f—l))

IN

n@aqam%

= (n'qm®)"

IA

exp [a(¢logn + mldlogq)]

< exp [al (logn + (2n/3log, , n)dlogq)] .

There are at most m® sets A of the given size, so we see that the probability

that any A has the given property is less than €/3 for n sufficiently large. O

Given t > n/ZW, we have now seen how large a K, or K +
K; minor a random graph G(n, p) has. It remains to be seen how large a K; -+
K, minor it has, and how large the minors are if we have ¢t < n/2,/log, ;,n
(and so s > t). For the former, the minor has essentially no more vertices
than a complete minor has, since K1) /2,(t+s)/2 is a subgraph of K; + K, if
s <t.

For the latter, the results are corollaries of those where t > n/2, /log; ,, n
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and the result of Bollobés, Catlin and Erdds generalised to p # % It might
have seemed more natural in the first place to consider the question in terms
of being given s < n/2,/log,,,n and being asked for ¢. However, inverting
the formulae for ¢,,(t) and s, ,(t) given above, it is not hard to see that we

arrive at the following, for positive integers n, s and real 0 < ¢ < 1:

142(2) logyjgn 4 /14 4(3)*(l0gy, n)?

brals) = : ,

n?q

and
n — s(logy,n)/6, 4(s)
Crq(5) '
Here £, (s) is the number of vertices in each part of the t-side of the minor;

thg(s) =

each part of the s-side has (log, ,, n)/(;, ,(s) vertices. The largest ¢, for which
a random graph G(n,p) (with ¢ =1 —p) has a K, ;, or K, + K;, minor is
then almost surely (14 0(1))#,4(s,). The substantially increased complexity
of the formulae indicates that it was appropriate to consider the problem

first in terms of given ¢, deriving this case as a corollary.

2.3 Constrained random graphs

In this section only, we consider a different random graph model, where
edges are independent but different edges have different probabilities of being
present; there is a fixed vertex partition (X,Y’), and the edge probabilities
within X, within Y and between X and Y differ (but are fixed within each
of these three parts). This is closely related to graphs where the density of
different parts of the graph is different; such graphs are considered in general
in Chapter 5. Here we determine an upper bound on the order of complete
minors in such random graphs; the corresponding lower bound, and so the

determination of the Hadwiger number of these graphs to within a factor of
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1+0(1), is done for more general graphs in Theorem and random graphs

almost surely satisfy the connectivity condition of that theorem.

Theorem 2.3 Let 0 < €,a,px,py,pxy < 1 be given. Put qx = 1 — px,

qv =1 —py and gxy =1 —pxy. Put

o2 (1—a)? 2a(l—a
4+ ZQXQ§/ : CJXSS )

For all sufficiently large n, if t = [(1 + E)”/\/WL and G is a random
graph on n vertices with a fized partition of the vertices into X and 'Y, with
| X| = a|G|, where edges within X are present with probability px, edges
within Y are present with probability py, and edges between X and Y are
present with probability pxy, then P(K; < G) < e.

Proof If GG has such a minor, it has a vertex partition into parts X;UY;, for
1 <1 <t, where X; C X and Y; C Y, with an edge between any X; UY; and
any other X; UY;. There are at most n" such partitions, and the probability

that any given partition has the required edges is

1G5 YillYs] | XY+ X5 1Yl
Po= H(l_QX Yoyt axy T )
i#j
XillX;1 YillYs] |G| 1Y; 1+ XY
< eXp[—ZqL( I glqu I ’|q|XY” 311Xl I}
i

1 XX [YilYal XY [+ X5 Y
< eXp{t/Q—ﬁz X I X1 |
j

(2

The right hand side of this inequality is maximised when the sum is min-
imised. The product of the terms summed does not depend on the |X|
and |Yj|, so the sum is minimised when all the terms are equal, which oc-
curs when all |X;| = [X|/t = a,/Tog;,, n/(1+¢€) and all |Y;| = [Y]/t =
(1 —a)y/logy,,, n/(1+¢). We then have |X;|[X;| = o®(log .. n)/(1 + €)?,
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YillYj] = (1 = @)*(logy,, n)/(1 + €)*, and [X;||Yj| + [X;|[Yi| = 2a(1 —

a)(log, g, n)/(1+ €)%, s0

P

IN

[ o n €)?
eXp t/2 - %tQQil gl/q* )/(1+ ) i|

= exp [t/2 — LizglBe n>/<1+e>2}

= exp -t/2 — %t2n_l/(1+e)2} :

Thus the probability that any partition has the required edges is less than e.
O



Chapter 3

Noncomplete minors

3.1 Introduction

Thomason [64], following previous work by Mader [36], Kostochka [29, 30],
and others, determined the extremal function for complete minors in terms
of the average degree, showing that the average degree that forces a K; minor
is that of random graphs of a certain order and density, in which a K; minor

is almost surely the largest complete minor by the results of Bollobas, Catlin

and Erdés [2]. If we define
c(t) =min{c: e(G) > ¢|G| implies K; < G }

then ¢(¢) exists and he showed that c(t) = (a + o(1))ty/Togt, where a =
0.3190863431 ... is an explicit constant; or, equivalently, that the minimum
average degree guaranteeing a K; minor is (2a + 0(1))t\/Tgt. This is the
same Hadwiger number as for random graphs of density p = 1 — A\, where
A = 0.2846681370. . . is another explicit constant, and order n = t/Tog; )\ .

It is natural to ask, for more general noncomplete but dense graphs, what

average degree forces them as a minor; it will turn out that for the class we

29
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will define of ‘blown-up graphs’ this also derives from random graphs of the

same density. We define
c¢(H) =inf{c:e(G) > |G| implies G >~ H }.

Ideally, we would like an answer in the form of a structural property of H
that determines the approximate value of ¢(H), analogous to the role of the
chromatic number in the Erdés-Stone-Simonovits theorem [16, 15] determin-
ing how many edges force an H subgraph. Failing this, we would like to
determine ¢(H) for as wide a class of H as possible.

Let F' be a graph with no vertices of degree zero, where loops but not
multiple edges are allowed. Let positive weights w(v), summing to 1, be
assigned to the vertices of F. Then (F,w) can be blown up to a graph F; of
order t by mapping each vertex v to a set W (v) of vertices with |w(v)t] <
W (v)| < [w(v)t], where there is an edge between u; € W(v) and uy € W(w)
(with u; # us, but possibly v = w) if and only if there is an edge between
v and w in F. Note that, though F' may have loops, F; does not. (The
graph F; is not quite unique, since the exact size of each vertex set W (v) is
not precisely specified.) There is a natural sense in which certain (F,w) are
critical for blown-up minors; this is made precise in Definition [3.2. We shall
see that this notion of criticality does not depend on the edge density of the
graphs in which the minors are to be found, but only on (F,w) itself, and
in Section 3.3 shall find an exact characterisation of the critical graphs. We
shall also see that any dense graph H is (apart from a few edges) a subgraph
of a blow-up of a much smaller critical weighted graph which is no harder
than H to find in a random graph or in a general dense graph. This work,
in Section 3.3] is joint work with Andrew Thomason.

Thus, it would suffice to give a solution to the extremal problem for

graphs taking the form of a blow-up plus a few edges. Unfortunately, for



CHAPTER 3. NONCOMPLETE MINORS 31

some dense graphs it is the sparse set of edges that determines when the
dense graph can be found as a minor. We do not have a complete theory for
such cases, although in joint work with Andrew Thomason [41] we show that
the extremal graphs are random graphs (albeit without finding the desired
structural property), but can give complete results for blown-up graphs. For
this the methods of [64] can be adapted. Just as for minors in random
graphs, the key feature is arranging for the different parts of the minor to
have edges between them, each part then being made connected using a few
spare vertices. Here it turns out that the method of equipartitions in [64]
can be adapted to the task of finding blown-up minors; the key adaptation
is assigning, at random, vertices of G that correspond to each vertex of F
(the graph being blown up), before using the methods of [64] to assign, in
a suitably constrained way, the vertices corresponding to each vertex of the
blown-up graph Fj.

The main result for blown-up graphs is Theorem 3.15. Define A < 1 to
be the root of 1 — A + 2\log A = 0 and define a = (1 — \)/2+/log(1/)\);
we have A = 0.2846681370 ... and o = 0.3190863431 .... We will show that
c(Fy) = (a+o(1))ty/(logt)/m(F), where m(F) is a function of the weighted
graph F. Here the o(1) term represents a quantity tending to zero as t — oc.
This term is inevitable because the extremal graphs are related to random
graphs, and all results are expressed in terms of large minors H or ¢t — oc.
The results are generally stated in the form ‘given € > 0 there exists N such
that for n > N there is a minor with order at least (1—¢) times that required’;
they could also be stated in the form ‘given a sequence of graphs H; with
|H;| = t, some function of these graphs has a particular limit’.

A general theme in this work is that, to find a minor H in a random

graph, it suffices to find the sets of vertices W,,, for u € V(H), such that
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there is an edge between W, and W, whenever uv € F(H); given this, the
sets W, themselves can almost surely be made connected by using a few more
vertices. In Section|2.2 we proved this for bipartite minors in random graphs
by adapting the methods of Bollobés, Catlin and Erdds [2]. More generally,
we can adapt the arguments of Thomason [64] that yield such a result for
graphs that are sufficiently connected. In Section [3.2| we develop a general
form of this method, which is then used in Section and in Chapter
(This may also be used to derive results for random graphs; the random
graphs are sufficiently connected by results of Bollobds and Thomason [3]
that the connectivity of a random graph almost surely equals the minimum
degree.)

The arguments of [64], presented in a more general form in Section 3.2| can
then be used to make each part of the minor connected. This completes the
results on minors of dense graphs. To complete the solution of the extremal
function for F}, arguments corresponding to those of Thomason [64] for large
sparse GG are also needed; those arguments give a Ko minor, and he notes that
the constant 2 could be replaced by any larger constant. Here we therefore
develop a version of those arguments where the constant is arbitrary, so as
to complete the proof for general blown-up minors.

Since the extremal graphs are derived from random graphs of a certain
order and density, methods similar to those of Chapter |5 could be combined
with those of this chapter to give a general description of all the extremal

graphs as deriving from quasi-random graphs.
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3.2 General arguments

Thomason [64] presents an argument showing that if a graph is reasonably
connected, and partitions of most of the vertices can be found such that there
are edges between the different parts of the partition, then a few vertices can
be taken from the graph and used to make the parts of a partition of the rest
of the graph connected, so yielding a minor. A variation of this argument is
presented in [39]. Here we present a more general form of the method that
can also be used when the minors to be found are not complete. We use the
following lemma which is Lemma 4.1 of [64]; the simple proof may be found

there.

Lemma 3.1 Given a bipartite graph with vertex classes A and B, wherein
each vertex of A has at least v|B| neighbours in B (v > 0), there exists a
set M C B such that every vertex in A has a neighbour in M, and |[M| <

[log1/1- |Al] + 1.
The following is the result it is the purpose of this section to prove.

Lemma 3.2 Let 0 < € < 1 be given. Then there exists N such that the
following assertion holds.

Let G be a graph of order n > N. Let H be a graph of order t with
n/logn <t < n(loglogn)/\/logn. Let C C V(G) be such that every pair u,
v € V(GQ) have at least n/(logn)®* internally disjoint paths from u to v, of
length at most loglogn, the interiors of which lie entirely within C. Let D C
V(G)\C be such that every vertexv of G has at least n/101og log n neighbours
in D. Let V(G)\ (C'U D) be partitioned into sets W, for uw € V(H), such
that there is an edge from W/ to W, whenever uv € E(H). Then G has an
H minor with parts W, foruw € V(H), where W C W,.
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Proof By t applications of Lemmal3.1 we will find disjoint subsets My, ...,
M, in D such that every vertex of W/ has a neighbour in M; and ) . |M;| <
12n(loglogn)®A\/Tog n, as follows. After M, ..., M; have been chosen every
vertex of G — C' — D has at least n/10loglogn — 12n(loglogn)®s/logn >
n/11loglogn neighbours in D; so the conditions of that lemma apply with
A=W, B=D\ U_,M; and v = n/11(loglogn)|D| > 1/(11loglogn);
so we have M, with [Mj | < 1+ logy - [Al <1+ (log|A])/y <1+
11(log |A|) loglogn. Now we have ) . |W/| < n and ), log |W/| is maximised
(for a given ). |W/|) when the |W/| are equal, so

Z |M;| < t+11(loglogn) Zlog |W/|

)

< t+ 11(loglogn)tlog(n/t)

< 12n(loglogn)*/\/logn

for n sufficiently large.

We next find disjoint Ny, ..., Ny in C' such that M; U N; is connected
(then, W; = W/ U M; U N; will give an H minor). We can find such N;
with |N;| < |M;|loglogn, since, given Ny, ..., N;, we have [Ny U --- U
N;| < 12n(loglogn)*\/Togn and we have n/(logn)’* paths of length at
most log logn with internal vertices in C' between any pair of vertices u, v of

M1, so we find |M; 4] — 1 such paths to connect M;.. O

The following standard results from [64], proved there, are used in con-
junction with Lemma 3.2 to find the sets C' and D. They are his Proposi-

tion 4.1 and Lemma 4.2 respectively.

Lemma 3.3 Let X ~ Bi(n,p) be a binomially distributed random variable.

Let 0 < € < 1. Then P(|X — np| > enp) < 2e=<"/4,
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Lemma 3.4 Let G be a connected graph and let u, v € V(G). Then u and v
are joined in G by at least k*(G)/4|G| internally disjoint paths of length at
most 2|G|/k(G).

3.3 Blown-up graphs as minors and critical
graphs

This section represents joint work with Andrew Thomason.

In Section[2.2] we looked at complete bipartite minors and K ;+ XK, minors.
In this section, we generalise that work to a wider class of minors, which
includes complete multipartite graphs as well, and find that the question
of what graphs have an H minor for H in this class can be reduced to a
particular subclass of critical minors. The class of H we consider is that of

blown-up graphs, which we define as follows:

Definition 3.1 A weighted graph is a pair (F,w), where F is a graph
with no vertices of degree zero, where loops but not multiple edges are al-
lowed, and w is a vector of positive weights w(v) for the vertices of F, with
> vevr W) = 1. We commonly refer to F' (rather than the pair) as the
weighted graph where this does not cause ambiguity. Then, for any positive
integer t, a graph is a blown-up graph F; if it is of order t and its vertices
can be partitioned into disjoint sets W(v) (for each v € V(F)) such that
lw(v)t] <|W(v)| < [w(v)t] for allv € V(F) and such that there is an edge
between uy € W(v) and uy € W(w) (with uy # ug, but possibly v =w) if and

only if there is an edge between v and w in F.

Note that this definition does not quite specify F}; uniquely, because the

exact size of each vertex set W (v) is not precisely specified.
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For a weighted graph F', write

m(F) =

max min_ x(u)z(v).
z(v)weV (F) uweE(F)
2(v)>0,3 ey (ry w(v)z(v)=1
The quantity m(F) turns out to determine the extremal function for when
F; is a minor of a random graph, as shown by the following theorem and

Theorem [3.12 for minors in general graphs.

Theorem 3.5 Let 0 < p <1 and writeq =1 —p. Let 0 < e < % be given.
Then there exists N such that, if F is a weighted graph with all weights at

least n=/3, and n > N, and t = ’7(1—%6)\/777,([7) n/q/logl/qnw, then the

probability that any F; is a minor of G(n,p) is at most €.

Proof Suppose G = G(n,p) has such a minor. Thus, the vertices of G may
be partitioned into sets T,,; for v € V(F) and 1 < i < |w(v)t], such that
there is an edge between distinct T,,; and T}, ; whenever uv € E(F). Say a
partition is permissible if it has such edges. There are at most n™ possible
partitions. Let the probability that a given partition (of the fixed vertex set

of order n, while G is random) is permissible be P. We then have

p= 11 (1 = el Toal) < exp (_ 5 th,.”n,,j)

(1) (v,5), wEE(F) (w,0) (v,), weE(F)

The right hand side of this inequality is maximised when the sum is min-
imised. As before, holding all but |1, ;| and |T;, ;| fixed, we see the minimum
(if we allow the |T,, ;| to take noninteger values) is where |1, ;| = |1, ;|. Sup-
pose that at this minimum we have |T,;| = x(u)n/t. Observe that (for
n sufficiently large) >

wev(r) T(Ww(u) < 1+€ and so mingepr) 2(u)z(v) <

(1+ €3)m(F). Fix some u', v" achieving this minimum. We then have

P < exp[— > g e
(u,8)#£(v,5), wveE(F)
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< exp _— Z q(1+63)m(F)n2/t2}
- (WA )
< exp -— Z qUo81/4 n)(1+e3)/(1+5)2}
- (WA )
< exp _ Z q°81/4 N)(l—e):|
- (WA )
= exp|— Z n(le)]
- (WA)#EW))
< exp [—(n*26/3/4)t2n7(176)]

< exp [~ (1 + Pm(F)n*Ylog, ,n]

Since there are at most n™ = exp(nlogn) possible partitions, the proba-
bility that any one of them is permissible is less than e for sufficiently large n.

O

The converse of this result follows from Theorem on minors in gen-
eral dense graphs, since the random graphs almost surely have sufficient
connectivity.

We saw in Section 2.2 that a K 1—gy minor occurs in a random graph
essentially just when a Kg; + m minor does, if § < % In the notation
of this section, this means that a 2-vertex graph F with vertices u and v,
and w(u) = 3 < 3, with an edge uv and no edge vv, has the same m(F)
whether or not it has an edge uu. This extends naturally to a notion of

critical graphs.

Definition 3.2 A weighted graph F' is said to be critical if adding any edge
to I decreases m(F), and merging any two vertices decreases m(F'). (When
vertices are merged, the new vertex has as neighbourhood the union of the

neighbourhoods of the old vertices, with itself as a neighbour if either old
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vertex had either old vertex as a neighbour, and the weight of the new vertex

is the sum of the weights of the old vertices.)
The following theorem characterises the critical graphs.

Theorem 3.6 A weighted graph F of order t is critical if and only if its

vertices can be ordered as vy, va, ..., vy such that v;v; € E(F) if and only if
1+ >1t, and

w(vr) _ wlve-) W(Vi1-(1/2)) <1

w(vy) w(vy) w(v)e/2))

This graph has
-2

m(F) = [Z Vool

Proof Suppose F is critical. Suppose that z(v) are assigned such that we
have m(F) = minyepr) x(u)z(v). Say that an edge uv of F' is critical if
z(u)x(v) = m(F).

Every vertex must be adjacent to a critical edge; if u were not, z(u) could
be slightly decreased and x(v) slightly increased for all vertices v # u. No
distinct vertices u and v can have z(u) = x(v); for such vertices could be
merged without affecting m(F'). This means that every vertex is adjacent
to exactly one critical edge (for, if uv and ww were critical, we would have
z(v) = z(w)), and that there is at most one critical loop (for, if uu and vo
were critical, we would have x(u) = x(v)).

Each critical edge uv must have one endpoint u with z(u) < y/m(F), and
the other v with z(v) > /m(F), except that a critical loop wu must have
z(u) = /m(F). Let vy, va, ..., v]s/a) be the vertices with z(v;) < /m(F),
in increasing order of x(v;). Let vy11)/2 be the vertex of the critical loop, if

t is odd. Let v; and v;11_; be the endpoints of a critical edge, for 1 < i <
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|t/2]. Since x(vey1—i)z(v;) = m, it follows that x(vy) < z(vy) < -+ < x(vy).
Criticality of F' means that each v; has as neighbours exactly those v; for
which z(v;)z(v;) > m; that is, i + j > t. Thus F' has exactly the edges
described.

Suppose now that v;v; is a critical edge. We have m(F') = x(v;)x(v;) =
w(v;)x(v))w(vj)x(v;) /w(v)w(v;). If we hold z(v) fixed for all v # v;, v;, then
z(v;) and z(v;) may be varied such that w(v;)x(v;) +w(v;)z(v;) remains con-
stant. Thus x(v;)x(v;) is locally maximised when w(v;)z(v;) = w(v;)z(v;),
which must hold by criticality. This means that z(v;) = w(v;)z(v;)/w(v;),
so that

w(vi)” = m(F)w(v;)/w(v;) = m(F)w(vii—i) /w(v;).

The condition the theorem gives on the weights now follows from x(vy) <
r(vg) < -+ < x(v)g/2)) < V/m(F).

Since m(F) = x(v;)?w(v;) /w(vee1 ), we have

w(v)z(v;) = v/m(F)w(o)w(vig ).

Since t

Z w(vy)x(v;) =1,

i=1
we conclude that m(F') has the value given in the theorem.

Conversely, suppose that F'is a weighted graph of the described form. We
need to show that F'is critical. Suppose again that x(v) are assigned such
that we have m(F') = miny,ep(r) x(u)z(v). Supposing that F is not critical,
this assignment may be chosen so that some edge can be added, or some two

vertices merged, keeping the assignment and without decreasing m(F), as
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follows. We take an assignment for the graph with added edge or merged
vertices, and pull back that assignment to one for F'. If an edge was added, it
need just be removed. If two vertices were merged, split the resulting vertex
into two vertices with identical neighbourhoods, with each of them receiving
the z(v) of the merged vertex, then remove edges so that the edge set of the
graph is again that of F'. Again, every vertex must be adjacent to a critical
edge.

For i < j, we have I'(v;) C I'(v;). Thus z(v;) < z(v;); so, since v; is
adjacent to at least one critical edge, the edge v;vy1_; must be critical for
all 7. If some other edge v;vyy1 ;1) is critical, we then have z(vyy1 ;) =
T(Ver1-ivk) and so z(v;) = x(v;—). We shall now show that the z(v;) are
strictly increasing, with z(v;)w(v;) = x(ver1-;)w(veyr1—;) for all 4, by showing
that otherwise the x(v;) could be varied so as to increase m(F).

Let ¢ < t/2, let x(v;) be first in its sequence of consecutive equal z(v;),
and let z(vy) be last, so v; and v,41_ are each adjacent to only one critical
edge. If z(v;)w(v;) # x(Vir1-i)w(ver1—;), consider varying x(v;) and z(vy11-;)
to make them more nearly equal, then reducing them while increasing the
other x(v;). Unless ¢ < i’ and this involves increasing z(v;) and decreas-
ing z(viy1-4), we conclude that z(v;)w(v;) = x(vip1-i)w(ver1-4); in the re-
maining case x(v;)w(v;) < x(ver1-;)w(ver1-4), S0 in any case if i < i’ we have
z(v)w(v;) < (Vi) w(vep1—i); thus i/ < t/2 and likewise z(vy)w(vy) >

T(Vgp1—ir)w(Ver1—); but this implies w(vi1—;)/w(v;) > x(v;)/x(Vea1-i) =

(
x(vp)/x(vig1—ir) > w(vp1—)/w(vy), a contradiction for i < ’. Thus the
x(v;) are strictly increasing with x(v;)w(v;) = x(vip1—;)w(ves1—4) for all 4.

This, however, means that adding any edge will decrease m(F'). Since
the x(v;) are distinct, no two vertices may be merged either (through how

we derived the assignment for a noncritical graph in which vertices could be
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merged by pulling back one for the graph with those vertices merged). Thus

F' is critical. O

As a simple example, consider the case where F} is complete multipartite;
that is, F' is a complete graph (with no loops). Some process of adding edges
and merging vertices yields a critical weighted graph from F. Any critical
graph on more than 2 vertices has two distinct vertices with no edge between
them, which cannot arise in this way from a complete F'. Thus the critical
graph corresponding to F' has 1 or 2 vertices; if it has 2 vertices, the vertex
with no edge to itself has more than half the weight and must have arisen
from such a vertex in the original F', with which no other vertex has been
merged. Thus we see that the critical graph corresponding to complete F
(complete multipartite F;) has 1 or 2 vertices, and has 2 vertices if and only
if F' has a vertex with weight more than %

We have seen that how large an F}; minor is present in a random graph
depends (up to a 140(1) factor) only on m(F'). We shall see in Theorem 3.12]
that the same applies for minors in general graphs. This means that, for any
weighted graph F', there is a critical graph F” such that F; is a minor of a
random graph essentially (that is, up to a 1 + o(1) factor in ¢) just when
F} is. We now consider more general minors than blown-up graphs. We shall
see that any graph is a subgraph (plus a few edges) of a blow-up of a much
smaller critical graph that is no harder to find as a minor of G(n, p). However,
in some cases the question of whether H is a minor of G(n,p) turns out to
depend on the few edges not in this blown-up graph, and we do not have a

fully general theory of sparse graphs as minors although we show in [41] that

the extremal graphs for dense H are random and that regular graphs H of

order t and size t>~? cannot be found as minors if n < t\/(l — B)logy . t.

Theorem 3.7 Let 0 < € < i be given. Then there exists N such that the
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following assertion holds.
Lete <p<1l—e€. Letn> N. Let H be a graph of edge density greater
than €, and write t = |H|. Suppose that

P(H < G(n,p)) > €

Then there exists a critical weighted graph F with at most (7/€)logt ver-

—¢/6

tices and with all weights at least t such that there is some F; on the

same vertex set as H with H having at most >~/ edges not in F;, and

Vm(F)n/\/Togy,n > (1 —e)t

Proof If ¢t < (1+ €)n/\/log;,,n then taking F' to be the critical graph
on a single vertex will suffice, so suppose t > (1 + ¢)n/,/Tog,,, n. Since
P(H < G(n,p)) > €, there is some choice of y(u) for u € V(H) such that, for
any given partition of the vertex set of G = G(n, p) into t parts W, of orders
y(u)n/t, the probability that that partition has an edge between W, and W,
whenever uv € E(H) is at least en™". Fix such y(u). Note that the sum of
the y(u) is t. We have

e T (- g™ < eXp( N Lkl )

weE(H) weE(H)

so that

Z qlW“”W” = Z q y(wy()n?/t* < nlogn — loge.

weE(H weE(H
We divide the vertices of H up according to the value of y(u). For each

integer k put

Ap={ueV(H): (1—¢/3)F? <y(u) < (1- €/3)k=1/2 }.

For all u we have t/n < y(u) < t. Thus there are at most 2log; /;_¢/3)t <

(7/€)logt nonempty Aj. Writing e(A;, A;) for the number of edges between
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A; and A;, or for the number within A; when 7 = j, we have

1,J
where the sum is over unordered pairs of i and j. If t/n = /m/,/ logy /, 1,
where /m > (1 + ¢€), this means that

Z e(A;, Aj)n~ 0=/ m < plogn — loge.

2y
Say m = (1—¢/3)™", where r > 1. If i4+j+r—1 > 1, then n~(1-¢/3"7""/m >
n=1te3 If e(A;, A;) > t27¢/% we then have a contradiction. Thus e(A;, A;) <
2=/ for all i, j withi+j+r—1>1.

We now derive a blown-up graph from our given H. First discard all edges
from A; to A; where i+j-+7—1 > 1; this is at most ¢27/° edges. Then discard
all vertices in the A; with |A4;| < t'7¢/%; this loses at most t>~¢/7 edges. Also
discard any A; with no edges from them; because of the density requirement,
not all A; are discarded. Now add all edges from A; to A; where 7 + j +
r — 1 < 1. This yields a blown-up graph, and so a corresponding weighted
graph H* with at most (7/¢)logt vertices and with all weights at least ¢~</¢,
and we see that H has at most t2~%/10 edges not in H;. (Discarding the A;
with no edges from them was necessary to ensure the absence of vertices of
degree zero in H*.) Also, by construction of H*, using the z-values (1 —
€/3)¥+1/2 for A, (possibly slightly scaled up to give Y. x(u)w(u) = 1), we
see that \/WH*)n/\/W > (1 — €)t. Now take the critical graph F

containing H*, using Theorem [3.6. O

One specific case of this is worthy of note. This is the question of whether
a graph is any easier to find as a minor than a complete graph of the same

order. The property that determines this in one direction is that of whether
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a graph has a tail; roughly, whether it is a subgraph (plus a few edges) of
a blow-up of a critical graph of order 2. For a graph without that property,
the relevant critical graph is that with a single vertex. (The above comments
about sparse graphs that are hard to find as minors mean the converse cannot

be so simple.) These results are formalised in what follows.

Definition 3.3 Let H be a graph of order t. An e-tail in H is an ordered
pair (S, T) of disjoint subsets of V(H) with |S| < |T'|—et and e(T,V(H)\S) <

2,

Note that a e-tail is also an 7-tail for any n <.

Theorem 3.8 Let 0 < € < % and 0 < p < 1 be giwen and put g = 1 —p
Then there exists to such that if t > tog, n= [(1 — \/e)t logl/qt-‘ and H is

a graph of order t with no e-tail, then H < G(n,p) with probability at most €.

Proof If H < G, then as usual we have a partition of V(G) into W, for
u € V(H), with an edge between W, and W, whenever uwv € E(H), and
there must be some choice of the |W,| such that the probability that a given

partition with those W, has such edges is at least en™. Thus we have
e ] (- cop(- 3 o)
uweE(H) weE(H)

We will show that ZWEE(H) gWellWol > #14¢/2 which yields a contradiction.

Write n = t£ where { = (1 —+/¢)/log,;,,t. As in the proof of the
previous theorem we divide the vertices of H into classes Ag, but here it
is more convenient to use linear rather than exponential bounds for those

classes: we set

—{ueVH): (1-(k+Hye) < W, <(1—(k-1)ve)r}.
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We then have Y, |[Ax| = t and Ay empty when (k — 1)/ > 1. Again we
consider which A; have edges to which A;. For u € V(H) define o(u) by
u € Ag. If for some u, v € V(H) we have o(u) = i and o(v) = j with
i+j > —1, we then have [W,||W,|/2 < (1 — (i — 1)ve) (1— (5 — I)ve) =
1—(i+j—1)ve+(i—1)(j — 3)e. For a given i with (i — 1)/e < 1, we see
that |W,||W,|/¢? is maximised when j is minimised; that is, when i+j = —1,
and subject to i 4+ 7 = —1 the expression is then maximised when ¢ and j are
0 and —1 in some order. Thus for any v and v with o(u) + o(v) > —1, we
have [W,,|[W,| < (14 2/€)(1+ 3/€)0% < (14 /€)%

If there are at least t*~¢ edges uv € E(H) with o(u)+0(v) > —1, we then
have Y e @ IWe] > eV _ (V0?2 (1m0 >
t1+¢/2  as required.

We now suppose that there are fewer than 7€ edges uv € E(H) with
o(u) + o(v) > —1, and show for a contradiction that H has an e-tail. We
consider some unions of the A;: for m > 0 put 7,,, = Up>,, Ar and S, =
Uk -m-14g. fu € T,, and v € S,,, we have o(u) + o(v) > —1, so that
(T, V(H) — S;) < t27¢. For there not to be an e-tail we must then have
Sl > [Ton] — et

Since ) |W,| =n = tf, we have
DA (= (k+VeE) <t <Y A (1= (k= 5)Ve) L.

k

k

Since ), |Ax| =t we conclude that

t t
—— < k|Ag| < =.
IS

But we also have

DoKA=Y T = A =21 = YIS
k

i>1 i>1
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= Y ml 1AL =215 = YIS

1<i<1/24+1 /€ 121

< (AINe+ g)et — [A] = 2Sl.

Now t = Zk ‘Ak| = |So|+|A71|+‘T0| < 2|S(]’+|A71|+€t, SO —’A,1’—2|SO| <
(=14 e)t. Thus >, k|Ax] < (—1+ e+ e+ ¢€/2)t < —t/2, a contradiction.
O

3.4 Minors of dense graphs

In this section, we suppose that we have some fixed weighted graph F'. Sup-

pose also that we have some positive z(v) for v € V(F'), with

and write

m(x) = mrélér(lF) z(u)z(v).

(It will be best to choose x so that m(x) = m(F'), but the arguments in this
section do not all require that choice.)

The main purpose of this section is to prove Theorem [3.12, that a graph
of order n, density 1 — ¢ and reasonable connectivity has an F; minor, for
t = (1—¢)y/m(x)n/\/10g,, n; in view of Theorem (3.5, this is best possible.
To do this, we will show that a partition into ¢ parts can be found, with the
necessary edges between the parts, and then Lemma 3.2/ will be applied to
find the minor.

To find the partition, we generalise the method of equipartitions used by
Thomason [64]. Let some F; be fixed, and suppose that in this F} there are
w*(v) vertices corresponding to v € V(F'), where |w(v)t| < w*(v)t < [w(v)t]

for all v € V(F). Define an (F}, x)-equipartition of G to be a partition
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of V(G) into t sets W, for v € V(F;), where there is an edge between
W, and W, whenever uv € E(F};), where the parts corresponding to a vertex
v € V(F) have total order |z(v)w(v)|G|] or [z(v)w(v)|G|], a quantity we
denote z*(v)w*(v)|G|, and where each of the w*(v)t parts corresponding to
v € V(F) has order |z*(v)|G|/t] or [z*(v)|G|/t].

The method of equipartitions used in [64] finds the equipartition as a suit-
ably constrained random partition; if the partition were chosen at random,
there could be too many parts with small neighbourhoods, but if it is chosen
in a suitably constrained way, so that each part has an even distribution
of vertex degrees, this does not occur. The key adaptation of this method
needed for it to be used to find blown-up minors is to divide the vertices of G
at random into the parts for each u € V(F), before applying the method to
find our constrained random partition. For this to work, we need to use a

result of Chvétal [10] on the tail of the hypergeometric distribution:

Lemma 3.9 (Chvatal [10]) Let
" (M (N - M\ [N\
o5 ()

Let p= M/N and suppose k = (p +t)n for some 0 <t <1—p. Then

p+t 1-p—t\ "
1— )
H(M,N,n, k) < | [ —L— L < e Hn,
p+t 1—p—t

The result achieved on equipartitions is as follows:

Lemma 3.10 Let G be a graph of order n > 10000|F| and edge density
p=1—gq. Let £ and s be positive integers with £ > 2 and s = |n/l| > 2.
Let some graph F be fized. Let positive w*(v) be as defined above, let some
positive x(v) for v € V(F) be given with ) w(v)z(v) = 1, and let some
x*(v) as above be chosen (that is, z*(v)w*(v)|G| an integer for allv € V(F),
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2oyt (w)w*(v) = 1 and [z(v)w()|G|] < 2" (v)w(V)|G] < [z(v)w(©)|G]])-
Let 3 =n~"* Let 8’ = Bn/min,ey(r) ([2* (W)l |w* (u)s). Let 0 <n < p—20'
and w > 1. Suppose that lx*(u) > 2 for allu € V(F). Write

_ 3|F|s
=

Ey

and

* * 2 !
ums 3 (oot [1220

} (1=n)[€z* ()] ([£™ (v)] -1)
uwveE(F) 1- U

Then G has an (Fy, X)-equipartition for some t with

Ey+E,+1

t>s— — .
MmNy, ey (F) w(u)

Proof First take a random partition of V(G) into sets V,, for u € V(F),
where |V, | = 2*(u)w*(u)n. We claim that this partition can be taken so that,

for all u € V(F) and v € V(G),
IT(0) N Vo] — 2(uyw(u)d(v)] < n®*.
We have [z(u)w(u)d(v) — o*(u)w* (w)d(v)] < 1 and n¥* — 1 > n¥%2. Now,
P (|IT(0) 0Vl = 2" (w)w (u)d(v)] 2 ta* (u)w (w)n) < 27200

by Lemma for any ¢ > 0. Take t = n~Y4/2z*(u)w*(u). We have
2022 (u)w* (u)n > n'/?/2 so that 22" Ww Wn < p=4 < p=3/3|F|. Thus

the probability that
[ID(v) N V| = z(u)w(u)d(v)| > n®/4

is less than n=3/3|F|, and so the probability that this holds for any u and v is
at most 1/3n?. Thus some partition in which each vertex has (to within 3n)

the expected number of neighbours in each V,, may be taken. We may also
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take a random V. C V, with |V]| = w*(u)s|z*(u)¢] and arrange for all
vertices to have within On of the expected number of neighbours within

each V. Fix such a partition in what follows.

For w € V(F) and v € V(G), let
QVy,v) ={weV,—{v}:vw¢gEG)}

be the set of nonneighbours (other than v) of v within V,,, let Q(V/),v) =
QVav) NV, let
Q) = |J Qv
)

ueV(F

and for W C V(G) let
NV, W) ={veVy: W cCQ)}

be the set of vertices in V] — W with no edge to .

For each w € V(F), order the vertices of V! as v(V/ 1), v(V.,2), ...,
v(V,,|VJ]) in increasing order of |Q(v(V,,4))|; that is, in decreasing order
of degree in G. Write q(V,,i) = |Q(v(V,,4))| /(n — 1). Now divide V, into
|x*(u)l] blocks

B(Vu, ) = {v(Vyyd) - (G = Dw"(u)s < i < jw"(u)s }

each of order w*(u)s, for 1 < j < [2*(u)¢]. For 1 < j < |z*(u)¢| now choose
a random permutation 3(V,,, j) of B;, these permutations being chosen inde-
pendently and uniformly at random from all (w*(u)s)! permutations, and so
derive a constrained random partition of { v(V/ i) : 1 < i < w*(u)s|z*(u)l] }

into w*(u)s parts
W (Vi) = {v(Vii, B(Va, 4)(0) 1 1< j < " (u)l] }

each of |z*(u)l] vertices.
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For S C V! and W one of the random parts W (V,,,7), we have

[z* (u)e]
SN B,
poves) = I S
7=1

[z™ (w)¢] z*(u
_ 1 3 1S 0B
— Ller(u)d] w*(u)s

j=1

15| [2* (u)e]
[ Lx*(U)EJw*(U)S] '
Taking S = Q(VU/,U(V;/,Z')), we have

P(v(V,,i) € N(V/,W)) =B(W C 8) < (q(V,, i)+ 3)" ™.
We thus have
E(|B(V,. ) N N(VLW)]) < w(0)s (a(Vy.ju(v)s) +8) 7

Say that a random part W in V, rejects a block B(V,,j) if |B(V,,7) N
NV, W) > ww*(v)s (¢(V, jw*(v)s) + ') Lx*(u)q, so that W rejects any
given block B(V,, j) with probability at most 1/w. Now write

R(V,, W) ={j < |z*(v)l] : W rejects B(V,,J) }.

We have E(|R(V,, W)|) < (lz*(v)¢] — 1) /w; say that a random part W is
acceptable if |R(V,, W)| < n(|z*(v)€] —1) for all v € V(F), so the probability
that a random part W is not acceptable is at most |F'|/wn.

Now let W be some given acceptable part in V!, and let v € V(F') be such
that wv € E(F). Let M(V,, W) ={1,2,..., |2*(v){] — 1} \ R(V,, W) and let
m(V,) = |M(V,,W)| > (1 = n)(|lz*(v)¢] — 1). Let W’ be some random part
in V] that is not equal to W. Let Py be the probability conditional on W
that there is no edge between W and W’. Let [ =1 if u =v and let [ =0

otherwise. We then have

Py = P(W CNV,W)|W)
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ww*(v)s (¢(V/, jw*(v)s) + ' Lo (u)e]
11 (a( w*?u)s ) ]) )

IN

JEM(Vy,W)
< (2w>w*(v)€ H (q(VZ,jw*(v)s) + 5/) [z* (w)¢] .
JEM(Vy,W)
Now observe that

Vol

Yo ws (Vi jwrw)s) +8) < D (Vi) +5)

JEM(V,, W) i=1

< (q+28)(w (v)s[2" (v)¢]).

Thus we have

I (a0 o)

JjeEM(Vy,W)

1/m(Vy)

< in X (agw ) +9)

JEM(Vy,W)

(q+208) (w*(v)s|z*(v)¢])
m(V,)w*(v)s

0 (1 29)
l* ()] a+20
[z ()] =1 1—n
Since ¢ + 26’ <1 —nand m(V,) > (1 —n)(|z*(v)¢] — 1), it follows that

IN

<

< @

17 (L=m) L™ () | (L™ (v) ] 1)

< (6w)€max{z*(u),x*(v)} q+2ﬁ .

< 1, 7

It now follows that the probability that a partition has more than FE;

unacceptable parts is less than %, as is the probability that a partition has
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more than F, pairs of acceptable parts without edges between them. So
take a partition with no more than FE; unacceptable parts and no more
than FE5 defective pairs, and remove the unacceptable parts and one part
from each defective pair. This might have removed disproportionately many
parts corresponding to some vertex u € V(F'), but the number of parts
corresponding to each such u can be made balanced again with the removal

in total of not more than (E; + E» 4 1)/(min,eyr) w(u)) parts. O

The above formulation is somewhat cumbersome to work with. To ob-

tain a more useful form, we will take s ~ /m(x)n/\/log;,,n and { ~
\/ logy/,n /\/ m(x) and show that E; and Fs are small compared to s. The

result we obtain is the following.

Corollary 3.11 Let 0 < e < 1. Let a weighted graph F' and some x as above
be given. Then there exists N such that the following assertion holds.

Let G be a graph of order n > N and edge density p = 1 — q, where
(loglogn)®**</logn < p < 1—(logn)~Y¢. Then G has an (F}, x)-equipartition

for some t with t > (1 —€)y/m(x)n/\/logy,n.

Proof Suppose throughout that n is sufficiently large for various statements
in this proof to work. Write w = min,cy(p)w(u) and z = maxy,cy ) z(u).

We have ¢ > (logn)~'/¢, so

logy/,n = (logn)/(log(1/q)) — oo

as n — oo. Put

0= |1+ ¢/2)flogyn /V/mx) |

n = ep/8 and w = 256|F|/e?>wp. Then we have

s=|n/t] >(1- e/Q)Mn/, flog, , .



CHAPTER 3. NONCOMPLETE MINORS 93

We will show that (where F; and F, are as in Lemma [3.10

Ey+E,+1

<es/2
" <es/

which in conjunction with Lemma [3.10] implies our result. Clearly 1/w <
es/6, and by choice of w and 1 we have E;/w = 3|F|s/wwn < €s/6. So it
will suffice to show that Fy < ews/6. For this it will suffice to show that

937 (A=mlea™ (w) ([ (v)] 1)
¢+t ﬁ] < ews /6| F|?

o [L42
for all wv € E(F). We have |fz*(u)](|[fz*(v)] —1) > (1+ €)log,,, n, and
so (since n < €/8) have (1 —n)|[fz*(u)] (L "(v)] = 1) > (1 +3¢/4)log, ,,n
Now we have log((q + 26')/(1 — 1)) = log(q + 20') + log(1/(1 — 1)) =
log(1/(1—n))—log(1/(g+23")) < log(l/(l—n))—(l—e/S) log(1/q). Observe
that log(1/(1 — 7)) = —log(1 —n) < 2n (since n < &), and 2n = ep/4, and
g=1—p<e™Psop < log(l/q) whence log(1/(1 —n)) < (¢/4)log(1/q).
Thus log((q +26")/(1 —n)) < —(1 — 3¢/8)log(1/q). We now have

352(6 )2£x q+20 203 (1—=n)[£z* (u) | ([£z (v)|—1)
1—=n
< sexp [logn + 20z 1og(1536|F|/e*wp) — (1 4 3¢/4)(1 — 3¢/8) log n]

< sexp [<4x/m) \/10g1 /41 log(1536|F|/e*wp) — (¢/4) log n]
< sexp [<4x/\/m(x)) V(logn)/p log(1536|F|/e2wp) — (e/4) log n}
< ews/6|F|?

for n large, given the bounds on p. a

We now use this result to show that a dense graph G with reasonable
connectivity has (to within a factor of 1 — ¢€) as large an F; minor as is to
be found in a random graph. (The converse result for random graphs G,

that no larger minor can be found, was found in Theorem 3.5; this result
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implies that minors of the given order can be found in random graphs, which
almost surely have the required connectivity.) The corresponding result of
Thomason [64] is his Theorem 4.1, where he shows that, given any s vertices
of GG, the K, minor can be chosen with one of those given vertices in each
part of the minor; this is used in the arguments for sparse graphs. Although
the argument here would allow such vertices to be chosen to be in each part
in our case as well, for the arguments of the next section it will suffice to use

Thomason’s original result where such a result is needed.

Theorem 3.12 Let 0 < e < 1. Let a weighted graph F' be given. Then there
exists N such that the following assertion holds.

Let G be a graph of order n > N, edge density p =1 —q and connectivity
k(G) > n(logloglogn)/(loglogn). Write ¢* = max{q, (logn)~/}. Then

G = Fy, where
. {a _ @wﬂ |

\/ logy,n

Proof Assume throughout that n is large. By Lemma for any u, v €
V(G), u and v are joined in G by at least x*/4n internally disjoint paths with
length at most

h = 2(loglogn)/(logloglogn);

let P, , be the set of such paths.

Let r = 1/(logloglogn) and select vertices independently and at random
with probability  from V(G), forming a set of vertices C, where |C| < 2rn
with probability at least % Using Lemma (3.3} the probability that a given
vertex v € G of degree d(v) has more than ed(v)/6 neighbours within C' is
less than 1/n?. For given u, v € V(G), C contains all the internal vertices of
some given path in P,, with probability at least r", independently for each

such path; and r"* > (logn)~'/% so r*|P,,|/2 > n/(logn)'/?. Again using
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Lemmal3.3, we conclude that the probability that fewer than r"|P, ,|/2 paths
of P,, lie entirely within C'is less than 1/n%; so there is some set C' (which
we now fix) with |C| < 2rn, with every vertex v of G having at most ed(v)/6
neighbours inside C', and, for every pair u, v of vertices of GG, with at least
n/(logn)'/3 internally disjoint paths from u to v with length at most h whose
internal vertices lie within C.

Similarly, choose a random subset D of V(G) \ C, choosing each vertex
with probability . With probability at least % we have |D| < 2rn; any given
vertex v has at least d(v)/2 > k/2 neighbours outside C' and the probability
that more than ed(v)/6 of these or fewer than rx/4 of these lie in D is at
most 1/n?; so we may fix D such that every vertex v has between rx/4 and
ed(v)/6 neighbours in D.

Let x be chosen so that m(x) = m(F). We will apply Corollary 3.11]
to G' = G — C — D to find an (Fy,x)-equipartition. The result will then
immediately follow by Lemma so it remains only to verify that the con-
ditions of Corollary 3.11/do apply with suitable parameters. Let n’ = |G|
and let p’ = 1 — ¢’ be the edge density of G'. We will use the parameters
¢/8, n/ and p’. We have n’ > n(1 —4r) = n(1 — o(1)), and for all v € V(G")
we have dg/(v) > (1 — €/3)dg(v). The connectivity of G implies that p >
k/2n > (logloglogn)/(2loglogn), so that p’ > (1 —€/2)p > 1/(loglogn).
If p’ = o(1) we then have log(1/q") = p' > (1 —€¢/2)p =~ (1 — €/2)log(1/q);
we also have ¢’ < q(g)/(g) < ¢q/(1 — 8r) so that log(1/q¢") > log(1/q) — 9r
whence if p’ # o(1) we have log(1/¢') = (1 + o(1)) log(1/q). In the case that
¢ is very small so that the upper bound on p in Corollary 3.11 does not
hold, ¢ < (logn')~%/¢, remove a few edges from G until this inequality no

longer holds; whether or not we need to remove those edges, we now have

log(1/q") > (1 — 3¢/4)log(1/¢q*). Now the conditions of Corollary [3.11 hold;



CHAPTER 3. NONCOMPLETE MINORS o6

applying it, we find an (F},x)-equipartition for some ¢t > s, and so find an

(Fs, x)-equipartition. O

3.5 Minors of sparse graphs

In this section we will show that ¢(F;) = (a + o(1))t\/(logt)/m(F). Con-
sideration of random graphs with ¢ = A and n = t\/(loglp\ t)/m(F) shows

by Theorem [3.5 that ¢(F};) cannot be any smaller, so we need only show
that graphs with the given average degree have the required minor. In the
previous section we saw how large an F; minor must be present in a dense
reasonably connected graph; we will see that this is at least as large as is
required. We will consider sparse graphs that are reasonably connected, and
show that they have minors much larger than required, and then combine
these arguments by considering graphs that are minor-minimal in certain
classes. The minor-minimality will imply that every edge has many triangles
on it, so vertex neighbourhoods are dense; so either there are many ver-
tices whose neighbourhoods have much in common, or there are many whose
neighbourhoods are largely disjoint. The former case is dealt with by the next
lemma. The latter case is dealt with by finding many disjoint small complete
minors in the disjoint neighbourhoods, and joining them up to form a large
complete minor. These arguments are simply those of Thomason [64], but
where the minors found are K¢, for any constant C'; he stated that the results
were true for any constant C', but only proved them for C' = 2. (The actual
formulations given allow the constant in the average degree to be arbitrarily

small, rather than the 1% which was given in [64], and find a K5 minor; this

is clearly equivalent to the version where a larger minor is found.)
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Lemma 3.13 Let 0 < ¢ < 1 and positive integers f and g be given. Then
there exist ty and co = co(c, f, g) > 0 such that the following assertion holds.

Let t > tg be a positive integer and let d > ct\/logt. Let G be a bipartite
graph with vertex classes A and B with |A| > cod and |B| < fd such that
every vertex of A has degree at least d/g. Then G = Ky.

(Thomason’s version of the above lemma (for digraphs) has ¢ = =, f =

10°
400 and g = 3.)

100f%9%¢* \We will show that G = Ko, supposing through-

Proof Letcy=c¢
out that ¢ is large enough.

First remove edges as necessary so that each vertex a € A has degree
exactly [d/g]. Now, successively for each vertex a € A, select some neigh-
bour b of a and contract the edge ab, until all the vertices of A have been
identified with vertices of B and we have a graph on B only. Choose the
neighbour b of a as the vertex of minimum degree in the subgraph spanned
by the neighbours of a in the graph left at the stage when a is being dealt
with. If this subgraph had edge density p, = 1 — ¢, then contracting ab adds
at least q,([d/g] — 1) edges to the subgraph spanned by B. This graph has
no more than 3|B|(|B| — 1) edges, so for some a € A we must have ¢, < ¢
where [Alg([d/g] — 1) = [BI(B| — 1), so ¢ = | BI(|B| - 1)/|A|([d/g] — 1) <
f2d?*/ cod([d/g]—1) < (f+1)%g/co. Let G’ be the graph spanned by the neigh-
bours of that vertex a when it is being dealt with, so that G’ has density at
least 1 — e~9/*9%¢*  Note that |G'| = [d/g].

We now find a subgraph of G’ with high connectivity. Let S be the
set of vertices of G’ with degree less than 3|G’|/4. We have 3|S||G'|/4 +
G/ = S||G'| > (1 —q)|G'|(|G'] — 1) so |S| < e 8F*9%/<*|G’|. This means that
|G' = S| >d/(g+1); and 6(G' — S) > 3|G’'|/4 — |S| so k(G' — S) > |G'|/2;
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and e(G' — S) > 1(1—¢)|G'|(|G'] — 1) — |S||G’|, so G’ — S has edge density at
least 1 — e~70/%9%/<* But now, by Theorem 4.1 of Thomason [64], G’ — S has
a complete minor of order at least <(1 —e)e(1/(g+ 1))\/70f2g2/c2> t > 2t

so G has our complete minor. O

We now show that in general a large sparse graph has a large complete

minor.

Theorem 3.14 Let 0 < ¢ < 1 be given. Then there exist t1 and ¢y, co > 0
such that the following assertion holds.

Let t > t; be a positive integer and let d > cty/logt. Let G be a graph
with |G| > c1d and kK(G) > cot. Suppose that e(G) < d|G| and that there are

at least d triangles on every edge of G. Then G = K.

(Thomason’s version of this theorem has ¢ = & and ¢, fixed to be 23.)

Proof Let g = [4a/c] + 2. Let h = (429). Let f = 3h+ 1. Let ¢; =
3(60(0, f,3)+ f) (where ¢y is the function of Lemma [3.13)). Let co = h. We
will show that G >~ K5, supposing throughout that ¢ is large enough.

We will first find h 4+ 1 disjoint subsets Sy, Sy, ..., Sp of V(G) such
that all S; satisfy |S;| < 3d and 0(G[S;]) > 2d/3. We successively find
each Siiq; when all S; have been found for 0 < ¢ < k. Write B = UfZOSZ-;
we have |B| < 3hd < fd. Let A= {veV(G)\ B :d(v) <3d}. We have
3d(|G| —|B| — |A]) < 2¢e(G) < 2d|G| so |A| > |G|/3 = |B| > cod. Every edge
of G is in at least d triangles, so for all @ € A we have §(G[['(a)]) > d. If
every vertex of A has at least d/3 edges to B, then by Lemma [3.13 we have
our minor, so suppose there is some a € A with fewer than d/3 edges to B.
Put Sg+1 =I'(a)\ B. Then Sk, is disjoint from the previous S; and we have
|Sk+1] < |T'(a)| < 3d and 6(G[Sk41]) > d —d/3 = 2d/3. Thus we can find all
the S; with the required properties.
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Now we find, for 0 < ¢ < h, a subset T; C 5; such that the average
degree of G[T;] is at least 3d/5 and k(GI[T;]) > d/40. If k(G[S;]) > d/40
then take T; = S;; otherwise remove a cutset of minimum size and consider
a smallest component of what remains; if that component has the required
connectivity, take it as T;, and otherwise keep repeating the process of re-
moving a minimum cutset and taking a smallest component. After k steps
this leaves a graph of order at most 27%|S;| < 3d2™" and minimum degree at
least 2d/3 — kd/40. For k = 3 this is impossible so this process terminates
after at most 2 steps, and then taking the resulting set as T; we indeed have
I(G[T;]) > 2d/3 — d/20 > 3d/5, so we have the required connectivity and
average degree.

Theorem 4.1 of Thomason [64] can be applied to the G[T;] to find complete
minors in them. We will join the minors for 1 < ¢ < h to form a larger minor
using paths through Ty, and will need to find the paths first before finding
the minors.

Let s = 2[t/2g]. For 1 < i < h, take s distinct vertices w}, w?, ..., wf €
T;. By Menger’s theorem [38] we then have hs entirely vertex-disjoint paths
joining the set W = {wF : 1 <k < s,1 <i < h} toTp; let P(w) be the
path joining w € W to Ty. The paths might use up many of the vertices of
the T;, so we need to adjust them not to do so. To make this adjustment,
fix some T = T; for some 1 < i < h. If P(w) contains more than one vertex
of T then let y,, and z, be the first and last vertices of that path that are
in 7. Lemma 3.1/ tells us that there are at least 107°d paths from y,, to 2,
in T of length at most 240. But 107°d — 2hs — 240hs > hs, so we may
successively choose a subpath in 7" from y,, to z, of length at most 240 for
each w such that all those subpaths are vertex-disjoint. Thus we may adjust

all the paths P(w) such that no more than 240hs vertices of T; lie on the
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paths for any 1 < ¢ < h. Let T/ be the subset of T; consisting of those
vertices of T; not in any of the paths P(w).

We are now ready to find the minors within each 7;. Fix some T = T;
with 1 < i < h and put 7" = T}; then we have |T'| — 240hs < |T"| < 3d
and k(G[T"]) > d/40 — 240hs > d/41, so Theorem 4.1 of Thomason [64]
applies to G[T"]. Write n = |T’| and let ¢ be the average degree of G[T"] and
p =1— g be its edge density. Then logn = (1 + o(1))logt and (n — 1) =
/(1 —q) =~ /(1 —¢*), so G[T'] has a K, minor with r > (1 — €)f(1 —
¢*)~'\/log(1/q*) //Togt (for any e > 0, provided ¢ is sufficiently large). The
expression in ¢* is minimal at ¢* = X\, where (1 — q*)_l\/m = 1/2¢,
and ¢ > 3d/5 — 240hs > d/2, so r > ct/4a > 2[t/2g| = s. Thus G[T"] has a
K, minor in which each of w}, w?, ..., w{ is in a separate part of the minor.

It remains to join up these K, minors to form a Ky minor. Relabel the
h= (%) sets T; as T} for 1 <i < j <4g. Put m = [t/g] = s/2. Relabel the

set WNT,;; as {aﬁj,bﬁj :1 <k <m}. Wesaw that T;; has a Ky, minor,

whose parts we may identify as A}, and B}, for 1 < k < m with o}, € A},

irj
and bf’j € Bf’j for all k.

We now choose 4gm > 2t sets UF, for 1 < i < 4g and 1 < k < m, which
will be extended to form our minor. Define

U = (U Afz) U (UV (P(“;z'))) v (U sz,j) Y <UV (P(bﬁj)))-

j<i j<i j>i j>i

These sets are manifestly disjoint. There is an edge between distinct sets
UF and Ul: between Bf; and Al if i < j, or between A} |, and Al_,; or
between Bf, ., and B!, , if i = j but k # I. Thus it remains only to make
them connected. Each UF contains exactly 4g—1 vertices of Ty, the endpoints
of the paths P(a¥;) for j < i and P(b¥;) for j > i; each A%, UV (P(a%)))
spans a connected subgraph, as does each BF; UV (P(bf))), so G[Uf] has
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at most 49 — 1 connected components, each containing a vertex of Tj. Thus
we need only join up these components with 4g — 2 internally disjoint paths

in Tp, calling the set UF with these paths added Wk

10

making these sets of
paths for all 7 and k vertex-disjoint from each other. We need to choose a
total of 4g(4g — 2)m < hs paths, and just as we found short disjoint paths
in T; for 1 < i < h we can find the required number of short disjoint paths

in Ty. Thus we have found our minor. O

To deal with graphs with small connectivity, we now need a notion of
minor-minimality, which is defined in terms of classes G4, of graphs, analo-
gous to the classes Dy, of digraphs considered by Thomason [64]. For d € N
a positive integer and k < (d + 1)/2 with 2k € N, put

Gir =1{G |G| > dand e(G) > d|G| — kd }.

Say that a graph G is minor-minimal in G4y if G € Gy, but, for all H < G,
it H # G then H € G4. Let G be a minor-minimal graph in G4;. Observe
that Ky & Gay and Kg11 & Gax, so that |G| > d + 2. Considering removing
an edge shows that e(G) = d|G| — kd + 1; considering removing a vertex
shows that d + 1 < §(G); we have §(G) < 2d — 1 from the value of e(G);
and considering contracting an edge shows that at least d triangles lie on
every edge of G. Finally, we claim that x(G) > k. To see this, let S be a
cutset and C' a component of G — S. Then G[C' U S| and G — C' are minors
of G with more than d vertices (by the minimum degree). Minor-minimality
means that they are not in Gy, so that e(G[C' U S]) < d|C|+ d|S| — kd and
e(G — C) < d|G| — d|C] — kd, whence e(G) < d|G| + d|S| — 2kd. But since
e(G) > d|G| — kd, we have d|S| > kd, so k(G) > k.

We are now ready to prove the general extremal result for blown-up

graphs.
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Theorem 3.15 Let F' be a weighted graph. Let o = 0.3190863431 ... be the
constant defined above. Let c¢(Fy) be the function defined above. Then

c(Fy) = (a+ o(1))ty/(log t) /m(F).

Proof As noted above, ¢(F;) cannot be any smaller than stated, by The-
orem [3.5. Take some € > 0, and let d = {(a + et (logt)/m(F)-‘. It will
then suffice to prove that, if ¢ is sufficiently large (in terms of €), then any
graph G with e(G) > d|G| has an F; minor.

Put k = [d/logloglogd]. Then e(G) > d|G| implies that G € Gy . Thus
it suffices to show that, for ¢ sufficiently large, if G'is minor-minimal in Gg
then Fy < G. So now suppose that G is minor-minimal in Ggy.

We now have e(G) = d|G| — kd + 1 = d|G|(1 + o(1)), at least d triangles
on every edge of G, and k(G) > k. If ¢; is the constant of Theorem 3.14]
applied with ¢ = a/2,/m(F), then if |G| > ¢,d, then provided ¢ is sufficiently
large the connectivity condition of Theorem [3.14 also applies and Ko < G,
so F; < G. So we now suppose that |G| < ¢;d. Put n = |G| and let p=1—¢q
be the edge density of G. Again provided ¢ is sufficiently large, the conditions
of Theorem [3.12 now apply. We have logn = (1 + 0(1)) logt, and if £ is the
average degree of G we have (n — 1) = /(1 — q) = ¢/(1 — ¢*), so that we
have an F, minor with s > (1 — €/2)¢(1 — ¢*)~'y/log(1/¢*) /\/Togt. Since
¢ = 2d(140(1)), we have an F, minor with s > 2at(1—¢*) )='/log(1/q*). The
expression in ¢* is minimal at ¢* = A\, where (1 — ¢*)~'/log(1/¢*) = 1/2q,

so indeed we have an F; minor with s > ¢. O



Chapter 4

Sparse bipartite minors

4.1 Introduction

In Chapter 2 we saw when complete bipartite minors appear in random
graphs. Where the two parts of the bipartite graph have sizes in some con-
stant ratio, and we ask for how large a K (1—g) minor appears in a random

graph, we saw that t = n/\/élﬁ(l — B3)log;/,n. In Chapter 3, we saw what

average degree forces such a minor in a general graph, seeing that the ex-
tremal graphs are derived from random graphs with a certain order and
density. (The details of the form of the extremal graphs, where the excluded
minor is a complete graph, are derived in Section 5.5.)

As well as considering the case where the size of the parts of the complete
bipartite graph are in constant ratio, it is also natural to consider the extreme
cases, of K, where s is fixed and ¢ is large. In this case, the extremal graphs
are no longer random. For example, in the trivial case where the graph we
wish to avoid as a minor is the star K;,, the extremal graphs avoiding this
minor are the union of disjoint K; graphs.

In many cases, it seems that K, + K; minors occur just when K,; minors

63
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do; in Chapter (2 we saw this to be the case for minors in random graphs. For
this reason, we also discuss K, + K; minors in this chapter, although without
proving results for them.

Of course, an average degree O (t\/Tgt ) forces a K¢ minor, and so a
K, minor. However, a better bound on the average degree that forces such

a minor would be desirable. I make the following conjecture.

Conjecture 4.1 Let s be a positive integer. Then there exists a constant C
such that, for all positive integers t, if G has average degree at least C't, then
K <G.

In this chapter we determine the exact average degree that forces a Ky,
minor, for t sufficiently large. The results are only stated and proved for
Ky, minors, but many of the arguments are more general and indications
are given where appropriate of how they may be adapted to K, 4+ K; minors.
These indications only describe how the arguments given could be gener-
alised; in some places, additional arguments not given here would also be
needed. The arguments for K5, minors are much more complicated than one
might expect; this complexity seems necessary, although much of it is only
needed to achieve a best possible average degree of t 4+ 1; an average degree
of t + 2 can be achieved without many of the special cases; in particular,
none of the special cases in Lemma 4.8 are needed for such a weaker result.

We return to K, and K, + K, minors at the end of the chapter.

4.2 Simple bounds

We observed that the star is a trivial case of a complete bipartite minor. We

state the obvious bounds for star minors formally here.
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Theorem 4.2 Let t > 1 be some integer. If a graph has average degree
greater than t — 1 then it has a K;; minor, but there exist arbitrarily large

graphs with average degree t — 1 and no Ky, minor.

Proof For the first part, if a graph has average degree greater than t—1 then
it has a vertex v of degree at least ¢, and v together with ¢ of its neighbours
provides a K, subgraph, which is a minor. For the second part, consider

graphs that are the union of arbitrarily many disjoint K; subgraphs. O

The following construction provides a general lower bound, which turns

out to be the correct bound for s = 2.

Theorem 4.3 Let 2 < s <t be integers and let k > 1 be an integer. Let G
be the graph on kt+s—1 vertices that is the union of k graphs K;ys 1, there
being s — 1 vertices shared among all those Ky, s_1 and all the other vertices

of G being in exvactly one Kiys_1. Then G does not contain a Ks; minor.

Proof Suppose that G has a K,; minor, so that there are disjoint subsets
Vi, Vo, oo, Vi, W, Wa, oo Wy of V(G) such that all G[V;] and G[W}] are
connected and there is an edge from V; to W; for all ¢ and j.

Because there are only s — 1 vertices of G shared among all the K;,, 1, at
least one of the V; does not contain any of those vertices; likewise, since s < t,
at least one of the W; does not contain any of those vertices. There must
be an edge between any such V; and W;, so all such V; and W lie entirely
within the same ¢ vertices that are in just one of the K,;,, ; making up G.
All other V; and W; must have a vertex in the s — 1 shared vertices; but this
implies that all V; and W; have at least one vertex within the same K;y,_1,
a contradiction since the V; and W, are disjoint and there are ¢ + s of them.

O
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Corollary 4.4 Let 2 < s < t be integers. For any € > 0, there exist ar-
bitrarily large graphs G with average degree at least t + 2s — 3 — € and no

Ky minor.
Proof The graph G of Theorem 4.3 has

(At —1) +t(s—1))+3(s—1)(s—2) =k (3t(t +25s — 3)) +1(s—1)(s—2)

edges. This gives an average degree of

kt(t+2s—3)+ (s —1)(s —2) (s—1)(t+s—1)
—t 4253
kt+s—1 253 kt+s—1 7

which tends to ¢ + 2s — 3 from below as k — 0. O

4.3 Small graphs

In this section we show that a graph of order not much bigger than ¢, and
with more than “2(|G| — 1) edges, has a K5, minor.

In general we consider a graph G, of order ¢ + d, where d < ﬁtl/ 4 and
suppose that this graph has more than %1 (|G| — 1) edges. Clearly we need
only consider d > 2. We then show that there are disjoint subsets A and B of
V(G), such that G[A] and G[B] are connected, A has at least t+ £ neighbours
outside A, and B has at least ¢ + g neighbours outside B. Then A and B
provide one half of the minor, and the intersection of the sets of neighbours
provides the other half. Each of A and B will in fact consist of a single
vertex, or a pair of neighbouring vertices.

The case of d < 3 turns out to be a special case, which we readily dispose

of:

Lemma 4.5 Let t be a positive integer. Let G be a graph of order t + 2
or t + 3 with more than %X(|G| — 1) edges. Then G has a Kz minor.
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Proof If G is of order ¢ + 2, then it has two vertices of degree ¢t + 1; for
otherwise, e(G) < 3(t{G|+1) = 3 (*+2t+1) = (|G| —1), a contradiction.
Those two vertices have ¢ common neighbours, yielding our minor.

Now suppose G is of order t43, so it has at least §(¢+1)(¢t+2)+1 = (t*+
3t+4) edges. If G has a vertex x of degree t+2, then it has some other vertex y
of degree at least ¢ 4 1; for otherwise, e(G) < 3(t{G| +2) = (1 + 3t + 2), a
contradiction. Then x and y have ¢ common neighbours. Otherwise, we see
in the same way that G must have at least four vertices of degree t+1. If any
two of these are nonneighbours, then they have t + 1 common neighbours.
Suppose then that there are exactly k vertices of degree ¢t + 1 and none
of greater degree; let those vertices be xy, x9, ..., x,. Each of them has
t 4+ 2 — k neighbours in the rest of the graph, so exactly one nonneighbour in
the rest of the graph; let the nonneighbour of x; be y;. No two y; are the same,
since if y; = y; then x; and x; would have ¢ common neighbours. If there
were an edge between y; and y; then contracting that edge would yield our
minor, one half having the vertices z; and x; and the other half having all the
other vertices of the new graph. Thus there are no edges among the y;. The
degrees of all vertices of G add up to at least t|G| + 4; all vertices other than
the x; have degree at most ¢, so we must have ) _, d(v) > t|A| — k + 4 for
any A C V(G)\{x1,22,...,7,}. But we have d(y;) <t+2—kfor1 <i <k,

and since k > 4 this yields a contradiction by taking A = {y1,vs,...,yx}. O

For larger d, we find A and B separately, finding both of them by the
same method; our results will show that, given a set X C V(G) with | X| < 2,
there is a subset Y C V(G) \ X with G[Y] connected, |Y| < 2 and Y having
at least t + g neighbours outside Y. This can then be applied with X empty,
to find A, then with X = A, to find B.
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Lemma 4.6 Lett and d be positive integers. Let G be a graph of order t+d.
Let X C V(G) with | X| < 2. Let the mazimum degree (in G) of any vertex in
V(G)\ X bet+s, where 0 < s < &. Let j be an integer with 0 < j < s, and
write dy, = [4 — j]. Suppose that there does not exist a subset Y C V(G)\ X
with G[Y] connected, |Y| < 2 andY having at least t+2 neighbours outside Y .
Then G has at most 5(t +d —1)(t+1) + 3[t(dy, +s+j—d+1) + d* + j> —
2dj — 1+ jdp + js — 2dy) edges.

Proof Let v be some vertex not in X with degree at least ¢t + j. Let A
be a set of t + j neighbours of v, and let B be the set of the remaining
d — j — 1 vertices of G.

Within B, there are at most (d_g_l) = (@ + j* —2dj — 3d + 3j + 2)
edges. From v to the rest of the graph there are at most ¢t + s edges. It
remains to maximise the number of edges within A, plus the number from A
to B. If we write d4(z) for the number of edges within A from a vertex = €
A, and dp(x) for the number of edges to B, then we need to maximise
> eeadp(z) + 3da(z). Every vertex z in A\ X has dg(z) < dj, (since if
z € A\ X had ¢ — j + 1 neighbours in B, we could take Y = {v,z}). Every
vertex z in A\ X has da(z)+dp(z) < t+s—1. To maximise dp(x)+ 3da(z)
subject to these constraints, we have dg(z) = dj, and da(z) = t+s—1—d,, so
we deduce dp(z)+ %dA(x) <d+ %(t—i—s— 1—dp), for vertices x € A\ X. For
any vertices © € ANX, we know only that dp(z)+3da(z) < |B|+3(JA]-1) =
d—j—1+3(t+j—1). Note that > _, dg(z) + 3da(z) will be maximised
if [ANX|=2.

Thus, we have

e(G) < P+ —2dj —3d+3j+2)+ (t+3)

+(t+5—2)(dp+3(t+s—1—dp))
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+2(d—j—1+30+j—1))
= Ld*+ 5% —2dj — 3d + 35 + 2+ (2t + 2s)
+(t+7—2)(dp+t+s—1)+ (4d — 25 — 6 + 2t)]
= [P+ —2dj+d+j—4+4t+2s
+(t+j—2)(dn+t+s—1)]
= L@+ —-2dj+d+j—4+4t+2s
+ (P +tdh+s+7—3)+ (G —2)(dp+5—1))]
= [P+ tdn+s+j+1)
+d®+ 5% —2dj +d — 2+ jdy + js — 2d]
= Lt+d-1)(t+1)

+t(dp + s+ 7 —d+ 1)+ d*+ 5% —2dj — 1+ jdy, + js — 2dy).

N

O

Corollary 4.7 Let t and d be positive integers, with 4 < d < \/t. Let G be
a graph of order t + d with more than (¢t + d — 1) edges. Let X C V(G)
with | X| < 2. Let the mazimum degree (in G) of any vertez in V(G) \ X
bet+s. Then, if s > L or s < 52, V(G) has a subset Y C V(G)\ X with
G[Y] connected, |Y| <2 and Y having at least t + ¢ neighbours outside Y .

Proof Ifs> %, then s > %, and Y can be a single vertex with degree t+s.
If s < 0, we would have e(G) < $(t(|G| = 1) +2(d — 1)) = 5(t(t +d — 1) +
2d—2) = 3((t+1)(t+d—1)+d—1—1), a contradiction. Thus we have
0<s< d;23.

Suppose for a contradiction that there is no such Y. Put 7 = 1 in

Lemma 4.6. If d is even, we have s < %l —2and d, = g —1; if d is odd, we

have s < g - g and d;, = g — % In either case, dj, + s < d — 3. We then have
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+d-1D(t+1)+1<e(G)<it+d—1)(E+1)+L{t(dn+s+2—d)+
d*> — 2d + s — dp,]. We deduce that

0 < tldh+s+2—d)+d*—2d—2+s—d,
< —t4d
a contradiction by the constraint on the value of d. O

Lemma 4.8 Let t and d be positive integers, with 4 < d < £tY/4. Let G be
a graph of order t + d with more than “2(|G| — 1) edges. Let X C V(G)
with | X| < 2. Let the mazimum degree (in G) of any vertex in V(G)\ X
be t + s, where % <s< %. Then either G has a Koy minor or V(G) has
a subset Y C V(G)\ X with GY| connected, |Y| < 2 and Y having at least

t+ g netghbours outside Y .

Proof We work as in the proof of Lemma 4.6, taking j = s. Let v, A and B

be as in that proof. If s = %, we have d;, = 2; otherwise we have d;, = 1.

Note that, while dp(z) + 3da(z) is maximised if dp(z) = d), and da(z) =
t+s—1—d, if s is too large then d4(z) > ¢t and v and = have ¢t common
neighbours, giving a Ks; minor. Write ¢ = 2s — (d — 3),so d = 2s +3 — c.
Say a vertex x € A\ X is good if dp(z) + 3da(z) < 5(t + s — ¢), poor if
dp(z)+3da(z) = 3(t+s—c+1) and bad if dp(z) + 3da(z) > 3(t+s—c+1).

If s = %, we have ¢ = 2. Considering the two possible values for dp(z),
we see that if s > 3 there can be no bad or poor vertices, but if s = 2 (so
d = 5) there can be no bad vertices but there can be poor vertices with
dp(z) = 1 and da(z) = t+s—3 =t—1. If s = ©2 we have ¢ = 1;
if s > 2 there can be no bad or poor vertices, but if s = 1 (so d = 4)
there can be no bad vertices but there can be poor vertices with dp(z) = 1

d—3

and dy(z) = t+s5—2 =1t — 1. Finally, if s = %=, and so ¢ = 0, again
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there can be no bad vertices, and if s > 3 there can be no poor vertices,
but if s = 2 (so d = 7) there can be poor vertices with dp(z) = 2 and
da(z) =t+s—3=t—1andif s =1 (so d =5) there can be poor vertices
with dg(z) =2 and dy(z) =t +s—3 =1t — 2.

First suppose that there are at least %\/f good vertices; this will hold
in particular when all vertices are good, which always occurs except in the
four cases given above when there may be poor vertices. Supposing there
is no K5, minor, and no Y with the property of the lemma, we maximise
the number of edges in the graph. The number of edges within B is at most
(d_s_l) = (8+2_C); the number from v to the rest of the graph is ¢ + s; and

2 2
|B| =d—s—1=s+2—¢; so we have

2
+2(s+2—c+i(t+s—1))

e(G) < (S+2_C)+(t+s)+%(t+s—2)(t+s—c+1)—%(%\/g)

— Us+2—c)(s+1—c)+ (2 +28)+(t+s5—2)(t+s—c+1)
— LVt 4 (2t + 65+ 6 — 4c)]
= %[tQ‘th—%\/Z—I—(S%—Q—c)(s—l—l—c)
+8s+(s—2)(s—c+1)+6—4c]
= 1t+D)(E+d-1)
4 (o= 2 26) = BVi (35— 205 + 24— 30
+8s+ (s* — 5 — cs — 24 2¢) + 6 — 4]

= t+1)(t+d—1)+ & Vt+25"+8s—3cs+ ¢ —dc+4].
Since e(G) > 3(t +1)(t +d — 1), we have

%\/Z < 252+ 8s—3cs+c? —4dc+4
< d%/2+d/4+8
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< 24,

so Vt < 120d?. But since d < -t'/* we have v/t > 121d?, a contradiction.

It remains to consider the case where there are fewer than %\/f good
vertices. Note that we have ¢ > 44% = 3748096. Let As be the subset
of A consisting of all vertices that are either good or in X; we then have
|Ag| < g5Vt + 2 < 2/t All other vertices of A are poor.

In each of the four cases enumerated above where there can be poor
vertices, the poor vertices all have the same d4 and dg values, and B is of
a small constant size (2, 3 or 4 depending on the case). The cases are as

follows:
e d=4|Al=t+1,da=t—1,|B|=2,dg=1.
e d=5|Al=t+2,ds=t—1,|B|=2,dg=1.
e d=5|Al=t+1,da=t—-2,|B|=3,dg=2.
e d=T|Al=t+2,dy=t—1,|B|=4,dpg=2.

In all these cases, dq + dg > t. We find a minor in one of two ways.
First, if poor vertices z, y € A have ['g(z) = ['5(y), then let one part of the
minor be y and another be {v,z}. If x and y are not neighbours then those
parts of the minor have at least ¢ common neighbours; in the case where
d =Tand dqg +dg = t + 1, those parts have ¢ common neighbours even
if x and y are neighbours. Second, we try to find poor vertices x1, yi, x2,
y2 € A such that I'g(z1) = I'p(y1) and I'g(x2) = I'p(ys), such that z; and x9
are neighbours, and y; and y, are neighbours, and {x1, 25} and {yi, y»} have
t common neighbours so may be taken as the parts of our minor.

The simplest case to consider is that of d = 7. Here we only need two

poor vertices with the same neighbours in B. We will have these as long as
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we have at least 7 = (;L) + 1 poor vertices, which we do by the bounds on ¢
and |Ag|.

The next simplest case to consider is that of d = 4. Here each poor vertex
has exactly one nonneighbour (which may or may not be poor) in A. By the
above arguments, we may suppose that any two poor vertices that are not
neighbours have different neighbours in B. If two poor vertices  and y are
neighbours but share the same neighbour in B and the same nonneighbour
in A, then they have t — 2 common neighbours in A, one common neighbour
in B, and share the neighbour v, so we have our minor. Thus we may suppose
that any element of Ag is a nonneighbour of at most two poor vertices. Thus
there are at least 4 poor vertices which have poor nonneighbours, and so the
poor vertices include at least 2 pairs of nonneighbours. Say that x; and y, are
nonneighbours, and xs and y; are nonneighbours, where I'g(z1) = I'p(y1) =
{b1}, say, and T'g(x2) = I's(y2) = {b2}. Then {z1, x5} and {y;,y2} each have
as neighbours the t other vertices of the graph, and we have our minor.

Now consider the case where d = 5 and |B| = 2. Let B = {by,b}
and write A; for the set of those poor vertices whose neighbour in B is by,
and A, for the set of those poor vertices whose neighbour in B is by. Each
poor vertex has exactly 2 nonneighbours in A; by the above arguments,
all edges within A; are present, as are all edges within A;. We will find
1, y1 € Ay and xo, Yo € Ay such that z; and x5 are neighbours; y; and y»
are neighbours; {x, 22} has as neighbours all but at most one vertex; {y1, 2 }
has as neighbours all but at most one vertex; and, if both those sets do not
have as neighbours all of G, their nonneighbours (which can only be in Ag)
are the same. This will yield our minor.

To find those vertices, first observe that there can be no more than 2 poor

vertices with any given pair of nonneighbours in A¢ (since two such with the
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same neighbour in B would have ¢ common neighbours). Thus there are
fewer than |Ag|* poor vertices with both nonneighbours in Ag. Let A} be
the result of removing all such vertices from Ay, and let Af be the result of
removing all such vertices from A,. At least one of these sets has order at
least 5| A¢|; without loss of generality suppose that is A}. Then there are at
least 5 vertices in A} that, if they have any nonneighbour in Ag, have the
same nonneighbour in Ag. Let those be Af.

Now take any vertex x; € A7, and let y, be a nonneighbour of x; in As.
If 2y has any other nonneighbour z in Ay, remove from Af all nonneighbours
(at most 2) of z. Also remove from A} any nonneighbour (other than ;)
of yo. There is at least one vertex other than z; left in A; let y; be such a
vertex. Let x5 be a nonneighbour in A, of y;. Then 2, and x5 are neighbours,
as are y; and ys, and each pair has as neighbours v, all of B, all of A; and A,
and all of Az except possibly the single vertex allowed to be a nonneighbour
of vertices in A}]. Thus we have our minor.

Finally, consider the case where d = 5 and |B| = 3. Let B = {b1,bs, b3}
and write Ajp for the set of those poor vertices whose neighbours in B
are {by, by}, and define Ay3 and As; likewise. Each poor vertex has exactly
2 nonneighbours in A; by the above arguments, all edges within A, are
present, as are all edges within A3 and all edges within A3;. For some pair
of those sets—say A2 and Ass—we will find x5, y12 € A1z and x93, yo3 € Ao
such that x15 and xy3 are neighbours; y15 and ye3 are neighbours; {12, 23}
has as neighbours all but at most one vertex; {y12, y23} has as neighbours all
but at most one vertex; and, if both those sets do not have as neighbours
all of G, their nonneighbours (which can only be in Ag U As;) are the same.
This will yield our minor.

To find those vertices, first observe that there can be no more than 3 poor
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vertices with any given pair of nonneighbours in Ag. Thus there are fewer
than 2|Ag|? poor vertices with both nonneighbours in Ag. Let Af,, Al
and A}, be the result of removing all such vertices from Ao, A3 and As;
respectively. There are at least 48| Ag| vertices left after this removal, so some
one of those sets, without loss of generality A/,, has at least 16| A¢| vertices.
Each vertex of A}, has a nonneighbour in Ay or Asy, so without loss of
generality suppose that at least 8| Ag| vertices have a nonneighbour in Asg,
letting the set of such vertices be AY,. Dividing up those vertices according
to what nonneighbour, if any, they have in A, we arrive at a subset A/, with
at least 8 vertices all of which have the same nonneighbour, if any, in Ag.
Now let x15 be any vertex of A, and let yo3 be a nonneighbour of 15
in Asz. Remove from A, the following vertices: any nonneighbour (other
than x15) of yo3 (at most 1 vertex); any nonneighbours (other than xs) of
any nonneighbour (other than ys3) of 212 in Asz (at most 2 vertices); any
vertex in Apy that shares a nonneighbour in As; with 33 (at most 1 vertex);
any nonneighbours in A5 of any vertex in Az that shares a nonneighbour
in Ag; with x15 (at most 2 vertices). At least one vertex other than xis
remains in AY,. Let y;2 be such a vertex, and let x93 be a nonneighbour
of Y12 in As3. Then x5 and x93 are neighbours; y15 and y»3 are neighbours;
and each pair has as neighbours v, all of B, all of Ajs, all of Ags, all of A3y
(since we arranged that neither pair could share a nonneighbour in As;), and
all of Ag except possibly the one vertex allowed to be a nonneighbour of

vertices in A7},. Thus we have our minor. O

Given these results, we can now conclude that a K»; minor is present in

small graphs with the required number of edges.

Theorem 4.9 Lett and d be positive integers, with d < max {4, 1—11t1/4}. Let
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G be a graph of order t + d with more than (|G| — 1) edges. Then G has

a Ky minor.

Proof If d < 2 the result is trivial, and if 2 < d < 3 it is Lemma 4.5, so
suppose 4 < d < %tl/‘l and that the graph has no K,; minor. Let G have
maximum degree t + s. If s > % or s < %, then let A be the set Y of
Corollary 4.7 with X empty. Otherwise, let A be the set Y of Lemma 4.8
with X empty.

Now let ¢ + ' be the maximum degree in G of any vertex not in A. If
s'> %1 or s’ < =2 then let B be the set Y of Corollary 4.7 with X = A.
Otherwise, let B be the set Y of Lemma 4.8 with X = A. Now A and B

provide one half of the minor, and their common neighbours the other half.

O

4.4 Large graphs

Lemma 4.10 Let t > 200 be a positive integer. Let G be a graph with
average degree at least t — 3. Suppose that G has a vertex v with degree at
least t + 50(logt)?, such that G — v is connected. Suppose that there are at
least (t — 3)/2 triangles on every edge from v. Then G has a Koy minor.

Further, if d(v) > %t, then G has a Ko 03¢ minor.

Proof Let v have degree 3(t—3), where 3 > 1. Every neighbour of v has at
least (t—3)/2 neighbours in common with v. Thus, if u is any neighbour of v,
and w is a random neighbour of v (chosen uniformly at random from I'(v)),
we have that P(u & I'(w)) < 1—1/23. If (for some positive integer k) w1, wo,

.., wg are (not necessarily distinct) neighbours of v chosen uniformly and
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independently at random from I'(v), and we write W = {w; : 1 <i < k},
then P(u & T(W)) < (1 —1/28)" < exp(—k/203).

If 6 <2 let k= DBlog(ﬁ(t — 3))} Then, for each u € T'(v), we have
P(u & ['(W)) < |[(v)|~. Thus, with positive probability, all vertices of I'(v)
are neighbours of some vertex of W. Fix some such W. If g > 2, let
k =3. Then P(u g I(W)) < (1 —1/26)> =1—3/23+3/46% — 1/33° <
1—-3/28+3/83 =1—9/83. Thus, with positive probability, W has at least
2(t — 3) neighbours in I'(v). Fix some such W.

G — v is connected, so there are some paths in G — v that connect W;
clearly we may take such paths so that the path from w; to w;, if any, does
not pass through any other element of W. Furthermore, if it contains more
than one neighbour of either w; or wj, it may be shortened, and if it contains
more than two neighbours of some other vertex w, € W, then it may be
replaced by two paths, from w; to w, and from w, to w;, containing fewer
interior vertices in total. Thus we arrive at a set of paths, such that the path
from w; to w; contains at most one neighbour of each endpoint and at most
two neighbours of each other element of WW. There need only be k — 1 paths
to form a spanning tree. Add the interior vertices of these paths to W to
form W’. Then W has at most (k — 1)(2k — 2) neighbours in W'\ W so at
most (k — 1)(2k — 2) + k < 2k? neighbours in W',

If B < 2, we now observe that £ < 5logt. Thus W has at least ¢ neigh-
bours in I'(v) \ W, yielding our K»; minor. If 3 < 2 but d(v) > 2t >
t + 50(log t)?, then ¢ > 19000 and Zt — 2k* > 1.03t, yielding our K3 93 mi-
nor. If 3 > 2, observe that (t —3)/8 —2k* = /8 — 18 — 2 > 0.03, so W has
at least 1.03t neighbours in I'(v) \ W". O

If instead we had wished to find a K, + K, minor in the above lemma,

we could have chosen s — 1 sets of vertices similarly to the set W above, and
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made them connected using the linking results of Bollobéds and Thomason [4],

provided that ( is not too large.

Lemma 4.11 Let t > 10% be a positive integer. Let G be a graph with
average degree at least t + 1, minimum degree at least (t + 1)/2, at least
(t — 1)/2 triangles on every edge, and connectivity at least 150logt. Let
|G| >t +300(logt)?. Then G has a Ky minor.

Proof Let v be a vertex of maximum degree. If d(v) > t + 50(logt)?, the
result follows by Lemma [4.10} so we suppose ¢ + 1 < d(v) < t +50(log t)?. If
(with similar notation to the proof of Lemma [4.10) we put d(v) = B(t — 1),
we have [ < 2. Put k = (26 log(ﬁ(t — 1))} As in that proof, choose W as
k vertices taken independently at random from I'(v), and fix some particu-
lar W such that all vertices of I'(v) are neighbours of some vertex of W. (If
this W happens to have fewer than k distinct vertices, add some arbitrary
neighbours of v to W to make it up to k vertices.)

Now let y and z be any neighbours in G —v — W. Let X =T'(y) N T'(z),
so that | X| > (t—1)/2. Write Y = {v,y} and Z = WU{z}. We wish to add
some vertices to Y and Z such that each becomes connected. Enumerate 7
as 21, 22, ..., Zk+1- The minimum degree of G is sufficient that for each 7
with 1 <¢ < k+1 we may find z;; and z; » neighbours of z;, all the z; ; being
distinct and none of them being v or y. Now k + 1 < 5(logt)?, so G — Z is
22(k + 1)-connected, so (k + 1)-linked in the sense of Definition 6.1} so we
may find vertex-disjoint paths from v to y and from z;2 to 2,11 ; for all i.
This yields a path that may be added to Y to connect it, and paths that
may be added to Z to connect that set.

As in the previous proof, we need to ensure that these paths consume few

neighbours of the sets to which they are added. In the case of Y, the path



CHAPTER 4. SPARSE BIPARTITE MINORS 79

may be shortened so that it contains at most one neighbour of each endpoint;
letting the augmented set be Y’, we then see that Y has at most |Y|+2 =4
neighbours within Y. In the case of Z, we end up with at most k& paths, each
containing at most 2k neighbours of vertices of Z, and adding these paths
to make a set Z’, so we have that Z has at most |Z| + 2k* = 2k* + k + 1
neighbours within Z’.

Now, both Y’ and Z’ have as neighbours I'(v) U X. If the graph does not
have the required minor, it follows that [T(v) U X| -4 — (2k*+k +1) < t.
Since [T(v) UX| = [T(v)|+ | X[ —|T(v)N X[ > 3(t+1) — [T(v) N X|, we must
have [I'(v) N X| > (t —1)/2 — 2k* — k — 5 > d(v)/3. But this means that
every vertex of G —v —I'(v) has at least d(v)/3 neighbours in I'(v), so some
vertex u of I'(v) has at least |G — v — I'(v)|/3 neighbours in G — v — I'(v).
But |G — v —T'(v)| > 250(logt)? — 1, so |T'(v) UT(u) — v| > t + 80(logt)?.
Contracting the edge between v and u leaves a graph satisfying the conditions

of Lemma O

To find a K, + K, minor above, s vertices could have been chosen in place

of y and z.

Lemma 4.12 Let t > 10%° be a positive integer. Let G be a connected graph
with more than “5* (|G| — 1) edges. Then G has a K, minor.

Proof We work by induction on |G|. Note that 300(log#)* < ¢/, Thus,
if |G| < t+ Lt'/4, the result follows by Theorem[4.9, and otherwise we have
G| >t + &t1* >t + 300(log t)2.

If G has a vertex with degree less than or equal to (¢t + 1)/2, remove
it; if G has an edge on which there are fewer than /2 triangles, contract

it. These operations pass from G to a minor of G with fewer vertices, and
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do not decrease e(G) — 2|G|. Thus we may suppose that G has minimum
degree at least (¢t +1)/2 + 1 and at least t/2 triangles on every edge.

If K(G) > 150logt, we are done by Lemma [4.11] so suppose k(G) <
150logt. Let S be a cutset with |S| = k(G).

If K(G) = 1, let X be some component of G—S. Both G—X and G[XUS]
are minors of G with fewer vertices; if neither satisfies the conditions of
the theorem, observe that together they have e(G) edges, so that e(G) <
H(G - X -1+ |X US| —1) =G| — 1), a contradiction. Thus one of
G — X and G[X U 5] satisfies the conditions of the theorem.

It remains to consider the case of 2 < k(G) < 150logt. In this case,
we may assume that A(G) < t + 50(logt)?, since otherwise we may apply
Lemmal4.10. If X is any component of G—.5, and neither G— X nor G[XUS]
satisfy the conditions of the theorem, we must have (G — X) < 21(|G —
X|—1) and ¢(G[X US]) < H(]X US| —1). But then

e(G[X])

v

e(G) —e(G — X) — |5]|X]

v

SHIGI - 1) +1 - 546 - X[ = 1) = |S]1X]
= (5 - IShix]+1

> (4 —150logt)| X|,

for all components X of G — S. Each graph G[X| must also have minimum
degree at least (t +1)/2 — 150logt and at least /2 — 1501log ¢ triangles on
every edge.

Now let u and v be two vertices of S. We will find disjoint subsets
U and V of X such that G[U U {u}] and G[V U {v}] are connected and
U U {u} and V U {v} have at least /2 common neighbours in X — U — V.
Since G — S has at least two components, we can then do the same with

another component (with the same u and v) to find our minor.
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Suppose x and y € X are neighbours. Then, by 2-connectivity, G[X U
{u,v}] has two vertex-disjoint paths from {u,v} to {z,y}; without loss of
generality, suppose that these paths are from u to z and from v to y. The
path from u to x may be supposed to contain just one neighbour of x; that
from v to y may be supposed to contain just one neighbour of y. Suppose
we put the path from v to x in U, and that from v to y in V. Consider the
common neighbours of z and y in X. At most one is in U, and at most one
is in V. If they have as many as t/2 4+ 2 common neighbours in X, we have
our minor, so suppose that |I'x(x) NT'x(y)| < ¢/2+ 1. This argument applies
for any pair of neighbours in X, so we may suppose this inequality applies
for all such pairs of neighbours.

If [Tx(2)[ + [Tx (y)| > 15¢/8, then [Ix(z) UTx(y) \ {z, y}| = [Ix (=) +
I'x(y)] — [I'x(x) N Tx(y)| — 2 > 11¢/8 — 3. Contracting the edge xy, and
contracting all components of G — S other than X into S, we may then apply
Lemma to find a K 1.031—100010g¢) Minor. Since 1.03(¢ — 10001logt) > t,
we may now suppose that |I'x(z)| + |Ix(y)| < 15t/8 for all z, y neighbours
in X.

G[X] has average degree at least t + 1 — 3001logt; that is, 2¢(G[X]) =
Ypexdx(z) > (t+1—300logt)|X|. It follows that Y _dx(2)* > (t +
1 —300logt)(2e(G[X])). But 3, xdx(2)® = 52 ,ex Dpery (@ (dx(2) +
dx(y)) < 15 Ywex 2oyeret = 16t(2¢(G[X])), a contradiction given the

— 16

lower bound on t. O

To find a K, + K, minor above in an s-connected graph, paths would be
taken from the cutset to more vertices than just x and .

Of course, if G is not connected, we may just take some connected com-
ponent of G with sufficiently many edges. We thus obtain the following
result, which (considering the lower bound of Theorem [4.3) is best possible
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for |G|=1 (mod t).

Theorem 4.13 Let t > 10% be a positive integer. Let G be a graph with
more than (|G| — 1) edges. Then G has a K, minor.

We now return to the more general problem of K, and K + K, minors.
Even for s = 3, we have no results better than the average degree O (t\/Tgt)
that forces a K,; minor, and so a K,; minor. None of the methods of
Section apply to these more general minors. Many of the methods of
Section [4.4 do apply more generally, but significant extra arguments would
be needed to obtain useful results this way. For example, Lemma [4.10/ can
readily be extended if § is small, but when ( is large there seems to be no

simple way to apply it to K, minors for s > 2.



Chapter 5

Graphs without large complete

minors

5.1 Introduction

Recall from Chapter [I/that Fernandez de la Vega [18] noticed from Bollobds,
Catlin and Erdds [2] (see below) that random graphs are good examples
of graphs with high average degree but no large complete minor. Kos-
tochka [29) 30] showed that they are within a constant factor of being optimal.
More recently, Thomason [64] essentially determined the extremal function
for complete minors K; in terms of the average degree, as t — oo: if we
define
c(t) =min{ c: e(G) > ¢|G| implies K; < G }

then c(t) exists and he showed that c(t) = (a + o(1))ty/logt, where o =
0.3190863431 ... is an explicit constant; or, equivalently, that the minimum
average degree guaranteeing a K; minor is (2a + 0(1))A/th.

Bollobés, Catlin and Erdés [2] showed that the largest K; minor in a

83
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random graph G(n, p) has

n

\/ logy,n

where ¢ = 1 — p. Choosing ¢ = A = 0.2846681370. .., another explicit

t=(1+0(1))

constant, and n = t\m, gives examples of graphs with average degree
(2ac 4 0(1))¢y/Togt and no K, minor. Examples with the same average de-
gree and larger order are then constructed by taking many disjoint copies
of G(n,1 —\).

Thomason’s proof in [64] therefore consists of showing that a graph (not
necessarily random) of average degree greater than (2a + 0(1))t\/Tgt must
have a K; minor. Having proved this, he then claimed at the end of the paper,
with an outline proof, that any extremal graph (that is, a graph with average
degree (2cc+ o(1))ty/Togt and no K; minor) is essentially the example given
above: that (save for a few edges) it consists of a disjoint union of quasi-
random graphs of the order and density given above. Here ‘quasi-random’ is
used in the sense of Chung, Graham and Wilson [9] or Thomason [61]: that
is, that every induced subgraph of order |G|/2 (or more generally ¢|G| for
any constant 0 < ¢ < 1) has essentially the same density.

So6s asked a more general question about complete minors and quasi-
randomness. It is sometimes the case that quasi-random graphs contain
larger minors than the corresponding random graphs; examples are given
by Thomason [63], and indeed the problem, raised by Mader, of explicitly
presenting graphs without large complete minors remains open. Sés asked
whether, however, the converse might be true: that if a graph of order n and
density p had no complete minor larger than that in a random graph G(n, p),
would the graph then necessarily be quasi-random?

At first sight, the outline argument in Section 7 of [64] would appear

to be usable to address Sos’s question. The relevant part of the argument
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is, essentially, that if GG is of maximal density having no K; minor, then no
subgraph of order (1 — €)|G| can have density much greater than that of G,
or it would have a larger minor than that found in the whole of G. Thus G
is quasi-random. (This uses a stronger result that a (reasonably connected)
graph of density p has Hadwiger number at least that of a random graph
of that density, to within a factor of 1+ o(1).) This argument is, however,
flawed on two counts: first, if the argument is quantified properly, using the
method and results of [61], it turns out that the minor in the subgraph is not
quite as large as is required; and second, the argument does not rule out the
possibility of graphs G' with very sparse subgraphs, and there are non-quasi-
random graphs (such as some bipartite graphs) that have no large subgraph
with significantly larger density than the original graph, but do have a few
large subgraphs with significantly smaller density.

In this chapter, our purpose is to answer Sés’s question; and at the same
time, our results provide enough information to fill in the gaps in Thomason’s
argument.

The answer to S6s’s question turns out to depend on the density and
connectivity of G. A graph G of order n and density p that is not quasi-
random will have a complete minor larger than that of a random graph G(n, p)
if p is large (including p > %), and the same result holds for smaller p provided
that G has moderate connectivity. Otherwise, if both the density and the
connectivity are small, the assertion may fail; for example, the disjoint union
of two G(n/2, 3) random graphs has order n and density ; but does not have
a complete minor as large as that of G(n, 7).

The following notation will be useful in this chapter. Given a graph G

whose vertex set is partitioned into two disjoint subsets X, Y, we define the
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three densities

_e(X) _e(X)Y) _e(Y)
Px = @, Pxy = IX[[Y] ) Py = ("g')

where e(X), e(Y) and e(X,Y) are respectively the number of edges of G
spanned by X, spanned by Y and joining X to Y. We likewise put ¢x =
1—px, gxy = 1 —pxy and gy = 1 — py. It is the principal feature of
quasi-random graphs that, for every X of given order, the value of px differs
little from p, the density of G itself, which of course implies that all of py,
pxy and py are close to p.

A precise statement of the answer to Sos’s question can now be given.

This involves a constant

1
Po=y (4 +1/3V33 - 17— /3V33 + 17) = 0.4563100873. . .,

which is the real root of 2% — 422 + 62 —2 = 0; and gy = 1 — py is the real
root of #3 + 22 +x — 1 = 0. (This arises from the inequality ¢* —2¢ + 1 =
(q—1)(¢*+q¢*>+q—1) > 0; as long as this inequality holds, a random graph
on half the vertices with twice the density will have a larger minor than a
random graph on all the vertices, but when ¢ > ¢ such a random graph on
half the vertices will have a smaller minor, and the extremal graphs become
the graphs made up of multiple disjoint random graphs with a few extra

edges, described above, rather than being themselves random graphs.)

Theorem 5.1 Given € > 0 there exist 6 > 0 and N such that the following
assertion holds.

Let G be a graph of order n > N and edge density p, where e < p < 1—e.
Suppose that G has a vertex partition (X,Y) with |X| = |Y| such that at
least one of |px — p|, |[pxy — p| and |py — p| exceeds €. Suppose that either

pP>pote€ (5.1)
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or

k(G) > n(logloglogn)/(loglogn). (5.2)

Then G contains a K; minor for

t>(149)

n
w/logl/qn

(where, as usual, ¢ =1—p).

Roughly, this states that a non-quasi-random graph has a minor larger
than a corresponding random graph provided that one of the conditions (5.1)
or (5.2) holds.

In fact, provided we consider only graphs of reasonably connectivity (5.2),
we can make a much more precise statement about the minimum order of a
complete minor.

Let G be a graph of order n with a vertex partition (X,Y’), where | X| =
a|G|. Let qx, gxy, qv be as above. Let p = 1 — ¢ be the density of G. Then,

if n is large, we have essentially
g =a’qx + (1 —a)’qy +2a(1 — a)gxy.

Consider now a constrained random graph G’ of order n with a fixed
vertex partition (X,Y’), where the edges are chosen independently and at
random, with probabilities px inside X, pxy between X and Y and py
inside Y. It is straightforward to adapt the arguments of Bollobas, Catlin
and Erdés [2] to show that the maximum order of a complete minor in this
constrained random graph is

n

\/ logl/q* n

(1 + 0(1))

where

(1-a)? 2a(1—-a).

2
¢ = aqx” gy gxy 3
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we saw in Section that this is an upper bound on the Hadwiger number
of such graphs. Taking logarithms and applying Jensen’s inequality [26, 27,

we see that
q 2 Gx,

with equality if and only if ¢x = ¢y = ¢xy-
The following theorem shows that our graph G with its given partition
will have a complete minor at least as large as found in the corresponding

constrained random graph G’, provided that G has reasonable connectivity.

Theorem 5.2 Let 0 < € < 1. Then there exists N such that the following
assertion holds.

Let G be a graph of order n > N, with vertex partition (X,Y) as above,
| X| = an, where ¢ < a < 1 —¢€. Let qx, qv, qxy and q. be defined as
above, and suppose € < qx,qy,qxy < 1 and ¢, < 1 — €. Suppose kK(G) >

n(logloglogn)/(loglogn). Then G > K, where

s = {(1—e)m—‘ :

This theorem is an extension of Theorem 4.1 of Thomason [64]; that
theorem gives
s> (1—- E)L,
when G has density p and reasonable connectivity; that theorem follows from
Theorem because ¢ > ¢,. The same inequality also means that Theo-
rem 5.2/ implies Theorem [5.1/for graphs of reasonable connectivity, except for
extreme values of the parameters.

Much of this chapter is based on work published in Combinatorics, Prob-
ability and Computing as [39)].
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5.2 Outline of the proofs

We prove Theorem first; then from it we derive Theorem 5.1. To prove
Theorem 5.2, we must partition V(G) into s parts Wy, ..., W, such that
each G[W,] is connected and there is an edge in G between each W; and W;.
The critical aspect is finding a partition that ensures that there are edges
between each pair of parts of the minor; if such edges exist, the parts can be
made connected, provided that G itself is reasonably connected.

For the case considered in Thomason [64], where all that is known about
G is its density p (and that G is reasonably connected, where appropriate),
that paper gives an argument for constructing a partition with the desired
properties. The principal feature is to order the vertices of G by degree and
to use this ordering to take a suitably constrained random partition.

At first sight it would appear that to extend this argument to the present
case, where the existing partition (X,Y’) and the densities px, py and pxy
must be taken into account, would require a two-dimensional partial ordering
of vertices by degrees to both X and Y’; but such an argument is not strong
enough to yield the required results. Nevertheless, somewhat surprisingly,
it turns out that the argument can be adapted to the present case after all;
although ordering the vertices by degree is not appropriate, there is a suitable
function on the vertices which provides a single linear order that will work.
Having found this ordering, the argument then follows somewhat similar lines
to those of Thomason’s proof of Theorem 4.1 in [64].

Having proved Theorem Theorem 5.1 is derived as follows: either G is
reasonably connected, in which case the result is immediate, or G has a very
small cutset (and we require ¢ < o to go any further). If this cutset splits
the graph into reasonably sized parts (each with at least 5—10 of the vertices),

we show that (for ¢ < qo) one of these parts is sufficiently much denser than
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the original graph that it would be expected to have a larger minor than a
random graph of the same order and density as the original graph. If small
cutsets only cut small numbers of vertices off the graph, we remove vertices
of small degree; either only a few of them exist, so after removing them the
resulting graph cannot have small parts cut off by small cutsets, or many
exist, and after removing enough of them the resulting graph has a larger
density. We iterate this process a bounded number of times, if necessary,
ending up at a graph of large connectivity and with a large complete minor,

and so deduce Theorem [5.1 using Theorem [5.2.

5.3 Proof of Theorem 5.2

We define a complete equipartition of G to be a partition of V(G) into disjoint
parts Wy, ..., Wy, such that G contains an edge from W; to W, for all
1 < i < j < k and such that [|G|/k] < |Wi < [|G]/k] for all i. The

following lemma lies at the heart of this chapter.

Lemma 5.3 Let G be a graph of order n with o, X, Y, q, qx, qv, qxv, G«
as above. Let €, s > 2 be integers with n = st and fa an integer, al > 2,
(1 —«a)l > 2. Then G contains a complete equipartition into at least

4 «
s— =0 257 (18w)* [1(]_

(1-n)¢(f—max{1l/a,1/(1—a)})
5 e

parts, for every 0 <n <1 —qx%qxy,1 — ¢y Ygxy® and w > 1.

Proof For a vertex v € V(G) we define Q(v; X) = {z € X\ {v} : vz ¢
E(G) }, the set of nonneighbours of v (other than v itself) within X, and
Q(v;Y)={yeY\{v}:vy & E(G) }, the set of nonneighbours of v (other
than v itself) in Y. Also put Q(v) = Q(v; X)UQ(v;Y). For W C V(G), put
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N(W) = {ueV(G): W CQu)}. Let
q(v; X) = |Q(v; X)|/(an — 1),
q(v;Y) = Q(v;Y)|/((1 — a)n —1).

Put

r(v) = q(v; X)*q(v; V)17
Then order the vertices of X as z1, ..., &, in order of increasing r(x;), and
similarly order the vertices of Y as 1, ..., y(1—a)n in order of increasing r(y; ).

Now define blocks B;* = {z; : (j —1)s <i < js} for 1 < j < of, and
BY ={yi:(j—1)s<i<gs}forl<j<(1-a)l. Independently and
uniformly choose random permutations 5])( , ﬁjy of the blocks, and so induce a
random partition of V' (G) into s parts W; = {ﬂfﬁf(t) 1< < af}U{yﬁ;v(t) :
1<j<(l—a)},1<t<s. |

Let S¥X c X, SY CcY, S =S8%XUSY. Then, for W one of the random

parts,

al | aX x| (1—a)l | qy Y
S+ N B: ST N B!
P(W c S) _—||| il | i

j=1

al | aX X |7l (1-a)t | qy Y7 (1—a)l
B B:
< Z |S* N B 1 Z S N By |
= (1 —a)l s

j=1
|SX| al |SY| (1—a)t
- [an} [(1—a>n] ’

using the AM/GM inequality.
For S = Q(x;), we have

S S
J=1

P(z; € N(W)) =P(W C S) < g(zi; X)*q(a;; V)98 — ().
Similarly, P(y; € N(W)) < r(y;). By the ordering of vertices chosen,

E (|BJX N N(W)|) < sr(wjs),
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and

E (IBY N N(W)|) < srlyys).

Say that W rejects a block B;* (respectively BY ) if [BX NN (W)| > wsr(x;)
(respectively |BY N N(W)| > wsr(y;s)), so that W rejects a given block
with probability at most 1/w; put RX (W) = {j < al : W rejects BX } and
RY(W) = {j < (1 —a)l : W rejects BY' }, so E(JR*(W)|) < (al —1)/w
and E (|RY(W)|) < ((1 — @)l — 1) /w. Call a random part W acceptable if
|[RX(W)| < n(al — 1) and |[RY(W)| < n((1 — )l — 1), so

P(WV is not acceptable) < 2/wn.

Now let W be some acceptable part; put MX(W) = {1,...,al — 1} \
RXW), M¥(W) = {1,...,(1 —a)f — 1} \ RY(W), mX = |[M*¥(W)| >
(1 —n)(al —1) and m¥ = [MY(W)| > (1 —n)((1 — @)l —1). Let W’ be
another random part and let Py be the probability, conditional on W, of

there being no edge from W’ to W. Then we have

Py = P(W CNW)|W)

wsr(x;s) wsr(y;s)
< it e 24 L7 \I5s)
- H s—1 H s—1
JEMX (W) JEMY (W)
< (2w) H r(Ts) H 7(Yjs)-
jeMX (W) jEMY (W)
Now, we have
1/mX 1
{ 11 T(xjs)w] < — D rlw)
jeMX (W) jeMX (W)
1 « —Q
= X Z q(zjs; X) Q<$js;Y)(1 )
JEMX(W)
1

IN

XY VYA
— > qlai X)q(z;Y)
m-s el
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< mis {i q(xi; X)} ) {i q(xs; Y)} o

i=1 =1

angx®qxy =

mXs
< qx“qxy 1™ al
- 1—n al —1

(using Holder’s inequality [24]) and likewise

Y

1/m (1—a) e 1— /
L o] <,

A () 1—n (1—a)—1
whence
a (1—a) ¢ emX
4dx qxy Q
Py < (2w)
W= (w){ 1—n X@E—l]
mY
gy gxy® (1—a)
X X
1—n (1—a)—1
0 q (1—n)l(f—max{1/a,1/(1-)})
< (18w) [ - }
1—mn
= P
say.

Now, we have a partition with at most 4s/wn unacceptable parts and at
most 2s?P defective pairs of acceptable parts with no edge between them.
Remove each unacceptable part, and one part from each defective pair. This
yields an equipartition of part of the graph into the required number of parts,

and the remaining vertices may then be distributed among those parts. O

We now convert this lemma into a more usable form.

Lemma 5.4 Let 0 < € < 1. Then there exists N such that the following
assertion holds.

Let G be a graph of order n > N, with vertex partition (X,Y), |X| = fn,
where € < < 1—e€. Let € < qx,qy,qxy and q. < 1 —e. Then G has a
complete equipartition into at least (1 — €)n/\/log, ., n parts.
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Proof Suppose n large (sufficiently large for all the parts of this proof
to work). Put d = [\/n|. We apply Lemma 5.3/ with « = |d3]/d, { =
d[(1/d)(1+€/2)\/Tog .. n ], s = [n/l],n=e(1—q.)/8 and w = 128/€*(1 -
q+). We lose a few vertices from G in the conversion to integer s and ¢, but
only O (\/W) < €n of them, so the effect on the n and ¢, used in
Lemma (5.3 is insignificant.

We have s > (1 —¢/2)n/,/Tog, ,. n, so it will suffice to show that each of
the terms subtracted from s in the statement of Lemma [5.3/is at most €s/4;
this holds for the first term by choice of n and w. For the second, we have
0(¢ — max{1/a,1/(1 — a)}) > (14 €)log,,, n, and since n < €/8 we have
(1—n)t(f—max{1/a,1/(1—a)}) > (1+3€/4)log, ,,. n. Also, log(l/(l—n)) =
—log(l1 —n) < 2n = e(1 —q,)/4 since n < g; and 1 — ¢, < log(1/q.), s
log(1/(1 — 1)) < (¢/4)log(1/q.); thus log(q./(1 — 1)) < (/4 — 1)log(1/g)
Thus,

g |0 max{1/a1/(1-a))
252(18w)" L .

n
< sexp [logn + (log (2304/€*(1 — q.)) — (14 3¢/4)(1 — €/4) logn]|
< sexp [ \/10g1 4. 1 log (2304/€*(1 — q.)) — (e/4) logn]
< sexp [ (logn)/(1 — q.) log (2304/€*(1 — q.)) — (€/4) logn}
< es/4
for n large, given the bounds on g,. O

We now use this result to find complete minors in dense graphs. We use

the results of Section 3.2.

Proof of Theorem Assume throughout that n is large. By Lemma /3.4

for any u, v € V(G), v and v are joined in G by at least £%*4n internally
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disjoint paths with length at most
h = 2(loglogn)/(logloglogn);

let P, , be the set of such paths.

Let r = 1/(logloglogn) and select vertices independently and at random
with probability  from V(G), forming a set of vertices C, where |C| < 2rn
with probability at least % Using Lemma the probability that a given
vertex v € G of degree d(v) has more than ed(v)/6 neighbours within C' is
less than 1/n?%. For given u, v € V(G), C contains all the internal vertices of
some given path in P,, with probability at least r", independently for each
such path; and r* > (logn)~'/% so r*|P,,|/2 > n/(logn)'/?. Again using
Lemmal3.3, we conclude that the probability that fewer than r"|P, ,|/2 paths
of P,, lie entirely within C'is less than 1/n3; so there is some set C' (which
we now fix) with |C| < 2rn, with every vertex v of G having at most ed(v)/6
neighbours inside C', and, for every pair u, v of vertices of GG, with at least
n/(logn)'/? internally disjoint paths from u to v with length at most ~ whose
internal vertices lie within C.

Similarly, choose a random subset D of V(G) \ C, choosing each vertex
with probability . With probability at least % we have |D| < 2rn; any given
vertex v has at least d(v)/2 > k/2 neighbours outside C' and the probability
that more than ed(v)/6 of these or fewer than rx/4 of these lie in D is at
most 1/n?%; so we may fix D such that every vertex v has between r+/4 and
ed(v) /6 neighbours in D.

Now consider the graph G — C — D, and apply Lemma 5.4/ to it with
parameter ¢/8. Each of ¢x, gy, qxy has changed by at most ¢%/10, so we
may find a complete equipartition of G —C — D into s parts, say W7, ..., W..
Now G, K, C' and D satisfy the conditions of Lemma 3.2, so by that result

we have our minor. O
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5.4 Proof of Theorem 5.1

From now on, we aim only for minors of order (1 + d)n/,/log;,,n, not for
stronger results involving ¢,. Theorem [5.2 now yields Theorem in the

well-connected case.

Lemma 5.5 Let € > 0 be given. Then there exist 6 > 0 and N such that the
following assertion holds.

Let G be a graph of order n > N and edge density p, where ¢ < p <
1 — €. Suppose that G has a vertex partition (X,Y) with |X| = |Y|, such
that at least one of |px — p|, |pxy — p| and |py — p| exceeds €. Suppose
that k(G) > n(logloglogn)/(loglogn). Then G contains a K; minor for

t> (1+0)n/\/log,,n (where, as usual, ¢ =1—p).

Proof Since logg = log(a?qx + 2a(1 — a)gxy + (1 — @)?qy) and log g, =
a?loggx + 2a(1 — a)loggxy + (1 — a)?log gy, we can, by considering the
graph of logx, choose small ¢; (much smaller than €) and § > 0 such that
if ¢ > €/2 and if any of |gx — q|, |gy — ¢, |gxy — q| exceeds €/4, then
(1 — e1)y/10g(1/qw) > (1 4 6)/log(1/q) holds, where we define q.. =
max{eq, qX}O“2 max{ep, qY}(l_a)2 max{ey, qxy 209,

If, now, €; < ¢x, qv, qxv, this lemma follows by applying Theorem
to G with €; in place of e. If we have one of gx, gy, gxy < € (but nevertheless
q > ¢€), then this means that almost all edges are present in some part of the
graph, and ¢, is much smaller than ¢q. Remove a few edges from the relevant
part or parts of the graph to increase ¢x, gy, ¢xy to above €1; by a result
of Mader [37] that a minimal k-connected graph on n vertices (n > 3k) has
at most k(n — k) edges, we may easily do this while preserving the required

connectivity. Since €; is small compared to ¢, after removing these edges, we
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still have (in the modified graph) one of |¢gx —q|, |gv —q|, |gxy — q| exceeding
€/4, so Theorem [5.2 applied to the new graph gives our result. O

It now remains only to consider the case of small connectivity. Define the
expected order of a complete minor in a random graph of order n and density
of nonedges ¢ to be t(n,q) = n/\/w. In many cases, we will reduce from
a graph G of order n and density at least p = 1 — ¢ to a subgraph H of order
0On, and want the expected order of a complete minor in H to be as large as
that expected in a random graph of order n and edge density at least p; that

is, if H is of density p’ = 1—¢/, we will want ﬂn/, [log; ,/(Bn) > n/\/log; . n;

it will suffice if 8+/log(1/q") > +/log(1/q), that is, if ¢ < ¢*/?*. Define

q(q,0) = ¢*/?*. Similarly, we may want H to have a minor at least (1+0)

times larger, so we also define ¢'(q, 3,0) = g(1Ho%5%,

Lemma 5.6 Let f,(a) =1—a*— (1—a)24a2¢" " + (1 — )2/ =" —q. If
O<a<land0<q<qy=1—po, then fy(o) > 0. Further, for 0 < q < qq,

we have fo(5gs) > 1073

Proof The behaviour of the function f,(«) is illustrated by Figure
in which graphs of fy4, fo5 and fos5 are shown. A quick glance at this
figure makes the lemma appear very plausible. Unfortunately, I don’t have
a short and elegant proof of the lemma. The proof here involves computer
verification of many cases; the tables of cases, and the source code for the
program that generated them and so completes the verification of the result,
are in Appendix /Al

Observe first that for a = 3, fy(@) = 3 + 1¢* — ¢. Thus f,(3) > 0 if
and only if ¢* —2¢+1=(¢q—1)(¢*+¢*+q—1) >0, whichon 0 < ¢ <1
occurs just when ¢ > ¢o. Note also that f,(0) = f,(1) = 0. Clearly, f, is

symmetrical about o = %
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Figure 5.1: f,

We have

a 2 2
5’_f = —da+2+¢"* (2a—2a7 log ¢) — g/ 1= (2(1 —a)—2(1—-a) tlog q)
«

and so

2
% = —4+¢" (2—2a ?logq+4a *(logq)?)
(8}

+ g0 (2 2(1 — ) log g + 4(1 — @) *(log ¢)?)

and all these functions are well-defined and continuous in « for any 0 < ¢ < 1.

The lemma may now be proved by numeric computation. The function

—rlogr on [0,1] is zero at 0 and 1, and has a unique maximum at r = e~

The function r(log)? on [0, 1] is zero at 0 and 1, and has a unique maximum

at 7 = e 2.

The second derivative above is composed of constants, ¢'/ 0‘2,
these functions for r = ¢/ * and corresponding functions of 1 — . Thus,

given bounds on ¢ and «, we may deduce bounds on the second partial
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derivative. To be precise, given 7y, < 7 < Tmax, We have

min{ —7min 10g "min, = max 108 Mmax } < —7logr < e !

1f T'min S 6_1 S Tmax, and
min{ —7min 10g "min, — max 108 Fmax ) < —rlogr
< max{—"min 108 "min, —Tmax 10g "max }
otherwise; similarly, we have
i 1 2 1 21 < (1 2 < ge?
Min{ 7 min (10g 7min )%, Tmax (108 Tmax )} < r(logr)® < 4de
lf Tmin S 6_2 S Tmax; and

min{rmin (108; rmin)2 » "max (10g Tmax)z}

< r(logr)2
S InaX{Tmin (1Og TmiH)Qa Tmaang rmax)2}

otherwise. If we now have that ¢uin < ¢ < Gmax and apipn < @ < Qpax, We

consider these bounds applied to ¢*/** and ¢/~ which satisfy

2

in S ql/a2 S ql/amax

max

1/af,
min
and

1/(1—amax)? < ql/(l_Oé)2 < qi{ii_amin)2‘

min — —

At o = %, the first partial derivative is zero. For 0 < g < 0.4, we
prove the lemma by showing that the second partial derivative is negative
for 0 < a < % This may be done by considering the numerical bounds for

four regions of (¢, a) space, being 0 < a < %; % <a< %; % <a< %; and

% <a< %, each being for the whole range 0 < ¢ < 0.4. The bounds are

shown in Table A.1.
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For 0.4 < ¢ < 0.48, determine the bounds on the second partial derivative
for regions of % in . These then give bounds on the first partial derivative
(working from £ to 0), which then bound f,(c) itself, showing it to be greater
than 0 for 0 < o < 1. Given bounds 9%, [(r — 1)/32,7/32] and 92, [(r —
1)/32,7/32] on the second partial derivative for (r —1)/32 < a <r/32, and
bounds Opin(7/32) and Opax(r/32) on the first partial derivative for a = r/32,
we compute O ((r — 1)/32) = Oin(r/32) — 02, [(r — 1)/32,7/32]/32 and
Omax (1 = 1)/32) = Omax(r/32) — 02,,[(r — 1)/32,7/32]/32; and given these
formulas, bounds on the first partial derivative for (r —1)/32 < o < r/32
may be found as O [(r — 1)/32, r/32] = min {Opin ((r — 1)/32), Omin(r/32) }
and Omax[(r — 1)/32,7/32] = max {Omax ((r — 1)/32), Omax(r/32) }. Similarly,
we then compute bounds on f,(«), starting from f,(0) = 0: we find suc-
cessively that fuwm ((r + 1)/32) = fuin(r/32) 4+ Ominlr/32, (r + 1)/32]/32,
fiax((r 4+ 1)/32) = funax(r/32) + Owmax[r/32, (r + 1)/32]/32; fuain[r/32, (r +
1)/32] = min { fuin(1/32), fuin ((r +1)/32) } and fra[r/32, (r + 1)/32] =
max { fiax(7/32), fmax ((r +1)/32) }. The main bounds (from which the oth-
ers may trivially be derived) are shown in Table

Finally, on the regions 0.48 < ¢ < 0.5 and 0.5 < ¢ < 0.55 separately,
we show that f has the expected shape so that it cannot be zero anywhere
if fq(%) > 0. That is, we show (using steps of é in «) that, for some
0<ap < %, we have the second partial derivative negative for a < ag, and
that the first partial derivative is negative for oy < a < % The first partial
derivative is positive at a = 0, and so we have a single minimum at o = %
The main bounds are shown in Table A.3| (for 0.48 < ¢ < 0.5) and Table A 4]
(for 0.5 < ¢ < 0.55).

It remains to show the lower bound on f,( . For this, observe

af
oo

1
T05)

= —da+2+ ¢ (2a — 20 log q)
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— ¢/ (2(1 — ) — 2(1 — @) "tlog q)

> —da+2— ¢t/0-? (21 —a)—2(1 —a) "logg)

> —da+2-q(2(1—a)—2(1-a) 'logq)

> —da+2—-2¢+2(1—a) qlogq

> —da+2—-2q —2(1—-a) el
This last expression is decreasing in «, and for a = 1—00 this value is positive,
80 folgog) = 15 (=4 X 105 +2 — 2q0 — 2(1 — 135) " 'e™) > 1075 O

We now apply this lemma.

Corollary 5.7 Let € > 0 be given. Then there exist 6 > 0 and N such that
the following assertion holds.

Let G be a graph of order n > N and edge density at least p, where
po+e€ < p. Suppose k(G) < n(logloglogn)/(loglogn), and that there exists a
cutset S in G with |S| = k(G) such that there exist X, Y with V(G) = XUY,
S =XNY and E(G) = E(G[X]) U E(G[Y]), and 75(n +15]) < |X]| <
=(n+15)). Then G has a subgraph H of order at least w5n and at most

100
2 (n+|S]) and density p' =1 — ¢ where ¢ < ¢'(q,|H|/n, ).

Proof Suppose we have such a cutset, and let |S| = yn. Choose our X, Y.
Our subgraph H will be one of G[X] and G[Y]. Put |X| = a(1 4+ 7)n and
Y| =(1—a)(1+7)n, where 75 < a < 5.

Define px, py accordingly as the densities of edges in X, Y; so that
p<a?(14+79)px +(1—a)?(1+9)°py and ¢ > 1 —a*(1+7)*(1 —gx) — (1 —
a)?(1+7)*(1—gv) = (1 = a*(1+7)* = (1 =)’ (1 +7)%) + (1 +7)%qx +
(1 —a)*(1+9)%qy = s, say.

We want to show that either gx < q’(q,a(l + fy),é) or gy < q’(q, (1-—

a)(1+7), 5). Since we have ¢ > s, it will suffice to show that either ¢x <
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¢ (s,a(1+7),6) or gy < ¢'(s,(1—a)(1+7),d). Suppose not; we shall derive
a contradiction. For, we then have ¢x > q’(s, a(l+7), 5) and gy > q’(s, (1—
a)(1+7),8),s0s > (1—a?(14+7)* = (1—a)?(1+7)%) +a*(1+7)*¢ (s, a(1+
7),0) + (1 — a)?(1 +7)%¢(s, (1 — a)(1 +7),9), that is, f(s,a,7,d) = (1 —
(1 +7)? = (1 = a)’(1 +7)%) + a®(1 + 7)%H7 0 4 (1 — @)’ (1 +
~)25140)%/(1=e)*(147)* _ s < (0. This function is continuous in all four variables,
and f(s,a,0,0) is fs(a) in the notation of Lemma

By Lemma 5.6, fs(«) is bounded away from zero on ﬁ <a< X
0 < ¢ < gy — €. By continuity (and so uniform continuity), we deduce that

we cannot have f(s,a,7,d) < 0 for v, § sufficiently small (depending on €),

so providing our contradiction. a

Corollary 5.8 Let € > 0 be given. Then there exist 6 > 0 and N such that
the following assertion holds.

Let G be a graph of order n > N and edge density at least p, where
po+€ < p<1l—e Suppose that G has a vertex partition (X',Y") with
| X'| = Y|, such that at least one of |px — p|, |pxvy' — p| and |py: — p|
exceeds €. Suppose that §(G) > gsn. Then either G contains a K, minor for

t> (14 6)n/\/logy,,n (where, as usual, ¢ =1 —p) or G has a subgraph H

of order at least <=n and at most 2n and density p' = 1 — ¢ where ¢’ <

100 200
q'(q, |H]/n,9).

Proof If x(G) > n(logloglogn)/(loglogn), we have a large minor by
Lemma [5.5. Otherwise, we have a small cutset S, with |S| = x(G), and
if we choose any division of G by this cutset, this induces X, Y satisfying
the conditions of Corollary [5.7] (since, for any choice of X, Y, where one of

X and Y might be too small, some vertex in X has degree at most | X|; but
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the bound on the minimal degrees then implies that |X|, |[Y| > gn). The
result then follows by Corollary 5.7. O

Corollary 5.9 Let e > 0 be given. Then there exists N such that the follow-
ing assertion holds.
Let G be a graph of order n > N and edge density at least p, where
1

pot+e<p<1—e Suppose 6(G) > gn. Then either G contains a K,

minor for t > (1 —e€)n/\/log, ,,n (where, as usual, ¢ =1 —p) or G has a
subgraph H of order at least ﬁn and at most %n and density p' =1 —¢

where ¢ < ¢'(q, |H|/n).

Proof If k(G) > n(logloglogn)/(loglogn), we have a large minor by The-
orem 4.1 of [64]. Otherwise, we have a small cutset S, with |S| = k(G), and
if we choose any division of G by this cutset, this induces X, Y satisfying
the conditions of Corollary (5.7 (since, for any choice of X, Y, where one of
X and Y might be too small, some vertex in X has degree at most | X|; but
the bound on the minimal degrees then implies that |X|, [Y| > zn). The
result then follows by Corollary 5.7. O

We now consider graphs with small minimal degree. For a graph G,
let G¢ be the result of applying the operation ‘remove a vertex of minimal
degree’ (|G| times to G, where each time the vertex removed is of degree less

1
than =5

Lemma 5.10 Let € > 0 be given. Then there exist N and & > 0 such that
the following assertion holds.

Let G be a graph of order n > N and edge density at least p > po. Suppose
I(G) < 5—1071. Let ¢ < %, and suppose that G exists. Then G has density
P =1—¢ where ¢ < ¢(q,1—C). Further, if C > é2, then ¢ < q'(q,1—(,5).
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Proof We use § = 1073¢2, and, for convenience, put § = 0 when considering
¢ <€
We have e(G¢) > e(G) — 55¢n?, so
(37— 55¢)/ (5(1 = ¢)?)
> (1+20)(p — 50)

> p+0.8¢

/

p

v

since p > pg. Thus ¢ < ¢ — 0.8¢.

We want to show that ¢/ < ¢(+970-9%: g0 it will suffice to show that
(q—0.80)1=9% < qU+9%; that is, ¢ x ¢~ 2+ x (1 —0.8¢/q)1 9" < ¢ x ¢¥+5°,
or, equivalently, cancelling a factor of ¢ and taking logarithms, that

0> (log(1/q))(2¢ — ¢* + 26 + 6°) + (1 — 2¢ + ¢*) log(1 — 0.8¢/q).
We have that log(1/q) < e™'/q < 0.38/¢, and log(1 — 0.8¢/q) < —0.8(/q, so
it will suffice to show that
0 > (0.38/q)(2¢ — (* + 26 +6%) — (0.8¢/q)(1 — 2¢ + ¢?)
= (1/q) (—0.04¢ + 1.22¢* — 0.8¢* 4 0.38(26 + 67))
< (1/¢)(—0.03¢ +1.22¢% — 0.8¢?)

by our choice of §. This result holds provided ¢ < 0.025. O

We now use the above results to show that general graphs of a given
density have minors as large as random graphs, if the density is sufficient or

a connectivity condition applies.

Lemma 5.11 Lete > 0 be given. Then there exists N such that the following
assertion holds.

Let G be a graph of order n > N and edge density at least p, where
0.9999 <p <1—e. Then G contains a K; minor fort > (1 —e)n/\/Tog, ,,n

(where, as usual, ¢ =1—p).
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Proof Repeatedly remove the vertex of minimal degree from G, until the
minimal degree is at least %n; say that we have removed (n vertices. Then
(< %, and G, has density p’ = 1 —¢' where ¢’ < ¢/(¢,1—() by Lemma/5.10!
Put ' = (1 — ()n = |G¢|.

If k(G;) > n'(logloglogn’)/(loglogn’), then Lemma [5.11] follows from
Theorem 4.1 of [64]. So suppose that x(G¢) < n/(logloglogn’)/(loglogn’).
Then, as in the proof of Corollary we have a small cutset S, with |S| =
k(G¢), and if we choose any division of G¢ by this cutset, this induces X,
Y satisfying the conditions of Corollary [5.7/ (since, for any choice of X, Y,
where one of X and Y might be too small, some vertex in X has degree
at most |X|; but the bound on the minimal degrees then implies that |X]|,
Y| > =n’). However, the density condition on G means that we cannot

50
have such X, Y. O

The next lemma shows that general graphs of a given density have mi-
nors as large as random graphs, if the density is sufficient or a connectivity

condition applies.

Lemma 5.12 Lete > 0 be given. Then there exists N such that the following
assertion holds.

Let G be a graph of order n > N and edge density at least p, where
€ < p<1—e Suppose that either k(G) > n(logloglogn)/(loglogn) or
p>po+e. Then G contains a K; minor fort > (1 —e)n/\/log, ,,n (where,
as usual, g =1—p).

Proof The well-connected case is just Theorem 4.1 of [64]; when p >
0.9999, the result will follow by Lemma [5.11. To prove the general result,

we apply a bounded number of operations to our graph, each moving from
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(H',p') (where initially (H',p’) = (G,p)) to (H”,p") where H' is a sub-
graph of GG of density at least p/, H” is a subgraph of G with density at
least p”, where p” =1 —¢'(1 — p/,|H"|/|H’|), so ensuring that at all stages
|H'| /\/logy,y |[H'| > n/\/Tog ,n (where ¢ = 1 — p'). These operations are
of the following forms. After any two of these operations have been con-
secutively applied, the new graph H" satisfies 1555 H'| < |H"| < 333 |H'|.
The upper bound ensures that the number of steps is bounded, because the
density must significantly increase; the lower bound ensures that p’ stays

bounded above by some quantity less than 1, so that Theorem 4.1 of [64] can
indeed be applied.

1. If p" > 0.9999, we have our minor by Lemma 5.11.

2. If the connectivity is high, k(H') > |H'|(logloglog |H’|)/(loglog |H'|),

we have our minor by Theorem 4.1 of [64].

3. Otherwise, if some cutset of order k(H’) splits the graph into parts each
of which has order at least g|H’|, then the conditions of Corollary
apply and by Corollary [5.7 we have our (H”,p") with |H"| < %\H’L

4. Otherwise, 0(H') < z|H'|. Remove successively a vertex of minimal
degree until all vertices have degree at least =s|H’| or at least =|H’|
vertices have been removed, forming the subgraph H” = H/. In either
case, Lemma 5.10 shows that this subgraph is sufficiently dense. This
is the only operation that might not significantly reduce |H’[; but if it
does not; then 6(H") > &|H"|, so the next operation must be one of

the first three above.

The number of passes through the above loop is bounded, so eventually

one of the first two operations listed applies and we have our minor. O
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Given this result, we can now prove Theorem

Proof of Theorem 5.1 Suppose € small. If
k(G) > n(logloglogn)/(loglogn),

the result follows from Lemma (5.5l Otherwise, repeatedly remove a vertex

1

of minimal degree from G, until either the minimal degree is at least z5n or

€2n vertices have been removed.

If €2n vertices have been removed, then by Lemma [5.10 the resulting
graph is H’, with density at least p’ = 1 — ¢/, where ¢ = ¢/(¢,1 — €2,9).
By Lemma applied to H', ¢’ and 6/2, H' > K; where t > (1 —
0/2)|H'| /\/10g, s |H'[; by the definition of ¢'(¢q,1 — €*,0) we have t > (1 —

6/2)(1+6)n/y/logy,n > (1+0/6)n/\/log; , n, as required.

Otherwise, say (n vertices were removed, where ¢ < €2. The numbers

removed from X and Y may not be equal, so remove a few more vertices
until they are, yielding a subgraph H’; so no more than 2¢*n vertices are
removed in total. For H' of density p’, we have that at least one of |p’y — /|,
1Pxy — D], [Py — | exceeds €/2, and po +€/2 < p' < 1—¢/2. If K(H') >
|H'|(log loglog |H'|)/(loglog |H'|), the result again follows from Lemma
applied to H' and €/2.

Otherwise, apply Corollary 5.8 to H' and €/2. Either it gives the required
minor, or it reduces to a subgraph H” of density p” = 1 — ¢” where ¢” <
(¢, |H"|/|H'|,d). Now Lemma [5.12 applied to H”, ¢" and §/2 gives the

result, as before. O
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5.5 Structure of extremal graphs

We are now in a position to give a description of the extremal graphs with
no K; minor, as was attempted by Thomason [64]; as with the argument of
Thomason, this is an outline, but the details differ. First consider those
extremal graphs G that are minor-minimal in G, the class defined in
Section where d is slightly less than ¢(t) (the extremal function) and
k = [d/logloglogd]. Then G has sufficient connectivity that the arguments
for sparse graphs (as given in Section[3.5) imply that G has a large complete
minor if it is too large, and if G is not too large, then as in the proof of
Theorem 3.15, for it to be extremal it must be a graph of density 1 — A and
order t,/log;,, t. By Theorem 5.1, G is quasi-random.

We now claim that the general extremal graph is made up of disjoint
quasi-random graphs of the form described with only o(nd/logloglog d) ad-
ditional edges. If we consider an extremal graph, which must be in G4, then
it must have a minor of the form described. This minor is obtained by a series
removals of vertices of small degree, contractions of edges with a small num-
ber of triangles on them, removals of edges to reduce the number of edges to
the minimum for the class, and moving to G[C'US] where S is a small cutset
and C'is a component of G—S. When a cutset is removed and one half of the
graph taken, neither half can have many edges fewer than extremal graphs,
since then the other half would have too many edges. So both halves in such
a case are essentially extremal, and so of the form described. If some vertex
and edge deletions and edge contractions of the types described are used to
arrive at such a graph from G, then consider the parts of G’ from which the
individual quasi-random parts of the extremal graph of the described form
arose. For the original graph to have been extremal, none of these parts

can have a significantly greater average degree than that of GG, but nor can
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they (at any stage of the contraction) have a significantly greater order and
similar average degree. Thus only a few edges and vertices are removed in
this way, and the extremal graphs are indeed made of quasi-random graphs.
(Thomason describes the structure as being a tree of quasi-random graphs.
There is not, however, a meaningful sense in which the structure is a tree:
no pair of the quasi-random graphs can have many edges between them, and
if a few edges are between the quasi-random graphs in the form of a tree,
a similar number of edges could also be present in another structure in the

extremal graphs.)



Chapter 6

Extremal problem for

connectivity

6.1 Introduction

Thomason [64] showed that the average degree that forces a graph to have
a K; minor is O (t\/Tgt). We saw in Chapter 3 how this can be extended
to some other dense minors. The extremal graphs are random graphs of a
certain order and constant density, or (as we saw in Chapter [5) larger graphs
made up of copies of these with few edges between them.

The small extremal graphs, being random graphs, have connectivity al-
most surely equal to their minimum degree [3]. The larger ones, however,
have much smaller connectivity—mno more than O(t). It is thus natural to
ask, if we require the graph G to be sufficiently large in terms of ¢, what
connectivity will force a K; minor. In particular, we might hope for a bound
linear in t. Equivalently, given a sufficiently large t-connected graph, we may
ask how large a complete minor it must have.

This question has some relation to questions of linking. This concept is

110
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defined as follows:

Definition 6.1 A graph G is said to be k-linked if |G| > 2k and, for all
distinct vertices x1, To, ..., Tk, Y1, Y2, --., Yx of G, there exist vertex-

disjoint paths from x; to y; for all 1.

Thomassen [65] characterises non-2-linked graphs, a characterisation we
will use later in this chapter; this characterisation is also given by Sey-
mour [58]. A connectivity of 6 implies that a graph is 2-linked. The exact
connectivity that implies that a graph is k-linked is not known for £ > 3,
but Bollobas and Thomason [4] showed that it is at most 22k. Robertson
and Seymour [54] showed that a 2k-connected graph with a K, minor is k-
linked. Thus, if sufficiently large t-connected graphs must have K, minors for
u > 23—225, this would yield an improvement on the bound of [4] for sufficiently
large graphs.

In this chapter, we do not find a general bound on the Hadwiger number
of a large t-connected graph. However, in one specific case—where the graph
has a long chain of cutsets of size t—we find there must be a K, minor
for u = t — 4 except if the graph satisfies some restrictive conditions, as
described at the end of the chapter, and for u = |t/4] except possibly if the
graph satisfies further restrictive conditions.

On the other hand, we can look for arbitrarily large ¢-connected graphs
without large complete minors. A 1-connected graph has a Ky minor; a
2-connected graph has a K3 minor; a 3-connected graph has a K, minor.
The examples K; + K, provide arbitrarily large t-connected graphs with
K11 minors but no larger minors. The icosahedron is 5-connected, but
planar so has no K5 minor; the faces of the icosahedron may be subdivided

into smaller triangles to yield arbitrarily large 5-connected graphs with no
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K5 minor. More generally, if I is the graph of the icosahedron, we may put
I, =1+ K;_5 for t > 5, which is a t-connected graph with no K; minor, and
then I, + K, is (t + 1)-connected with no K,,; minor.

6.2 Long chains of cutsets

The only case we study in this chapter is where the graph G has a long chain
of cutsets of order t, where kK(G) = ¢ and t is odd. The following defines
the notion of a chain of cutsets; ‘long’ here means sufficiently long for the

subsequent arguments to work, which requires a length of at least {2 (2(9)

Definition 6.2 A graph G of connectivity t has a chain of cutsets of length k
if the vertices of G can be partitioned into disjoint sets Sy, Ss, ..., Sk, T1, Tb,
coey Ty Wio, Was, .., Wi_1y (some of which may be empty) with the

following properties:

e |S;| =t for all i and each S; is a cutset. (We refer to the S; as the

chain of cutsets.)

e Removing S; separates the following sets of vertices from each other:
81U"‘USi,1UT1U"'UT%,1UWLQ"'UWZ‘,LU T’i; andSiHU---U
SekUTipa U UT, UW, g U UWy_q . Some of these sets may be

empty, and some of them may themselves be disconnected.

Thus, the set W, ;41 consists of those vertices ‘between’ S; and S;1; in the
chain; the set T; consists of those vertices ‘hanging off the side of the chain’
at S;. The sets T; do not play a significant role in the following arguments.

The connectivity implies that, by Menger’s theorem [38], we can find
t paths from S; to S;1; within W; ;1. Joining these paths gives rise to long
paths throughout the chain. Such long paths will form the components of



CHAPTER 6. EXTREMAL PROBLEM FOR CONNECTIVITY 113

our minor; if there is an edge from one path to another within 7; U .S; U
Wiit1 U Siy1 U T4y, or a path joining the two paths within those vertices
(excluding those vertices already in the other paths), that gives an edge of
the minor. (We cannot in general take multiple edges of the minor from the
same T; US; UW, ;11 US4 UTi44, since the paths between the components of
our minor might cross. However, this is not a problem since we are assuming
that our chain of cutsets is very long; it suffices to show that any single edge
can be found within a chain of cutsets of bounded length.)

If we were trying to find a K; minor, that would give too little room to
manoeuvre; instead we will find a smaller minor; the smaller the minor to
be found, the stronger the additional conditions that must be satisfied by a
graph without that minor. Suppose we fix some choice of the paths between
the S;, and put S; = {s;; : 1 <j < t}, where the paths from S; to S;;1 go
from s; ; to s;11; for all j; let this path (including its endpoints) be P; 41,
Suppose now we wish to find a K, minor for some r < t. Suppose that
we have partially assembled components of the minor (but not all pairs yet
have edges between them) using the chain up to S;; within S;, each part
contains a distinct vertex of S;. We could extend the paths to S;11 using the
paths P, ;11 ;; and we might gain some edges of our minor this way. But if
5i 4, is in one part of our minor, and s; j, is not in our minor, and there is some
path between the paths P ;1. and P ;1,5, within T;US;UW; ;41US;11UT;
that does not intersect the other paths, we could instead put both those two
paths, and the path between them, in the component of the minor that
contains s; ;,. We might then just follow the given paths from Sy to Sito;
so, in S; the vertex s; ;, is present in our minor, but the vertex s; ;, is not,
whereas in S;; 9 the vertex s, ;, is present in our minor but the vertex s;;9 j,

1s not.
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This method means that we can consider much of the problem of finding
minors in terms of a simpler problem of varying which vertices of each S; are
present in which parts of our minor. If iy < 79, define H;, ;, to be a graph
with vertex set {1,2,...,t} which has an edge from p to ¢ if and only if
there is a path between P, ; 11, U---UP;, 14, and P ;11U -U P, 1,4
within 73, U S;, U W, i1 U= U Wy,_q4, US;, UT,, that does not intersect
any of the other paths. If we enter S;, with r parts of our minor, A; for
1 <4 < r, where s;, 4 is the unique element of S;, in A; at that time, we
may then enter S;,;; with expanded parts A; of our minor, where s;,1 ¢ is
the unique element of S;, 11 in A}, where a(i) = /(i) for all i except one; for
that one 7, a/(7) being some value that is no a(j) where there is an edge from
a(i) to a'(i) in Hy, 4.

Equivalently, the problem can be considered as one of moving numbered
counters on the vertices of the H;, ;,; at S;, we have some arrangement of
r distinct counters (corresponding to the parts of the minor) on the set
V(H) ={1,2,...,t}, and at S;, one counter has been moved to a vertex that
neighbours it in H;, ;,. We wish to find such a sequence of moves on disjoint
[i1,12] intervals that eventually leads every counter to neighbour every other
counter during some interval not used for moving counters. Now, the chain
of cutsets is long, so some (labelled) graph H must appear many times as
graphs H;, ;,. We need only consider those graphs that appear many times.
We will see that a large class of them do allow the counters to be permuted
in the required manner, yielding our minor. Then graphs H in that class
can only appear a few times, so we can consider a long subchain in which no
such graphs appear at all.

In order to work with moving counters on these graphs, we need that

the graphs H are connected; this is the reason for the requirement that t is
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odd. For, we claim that H;; o is connected; if not, it has some connected
component X of order less than ¢/2. But if we then remove the vertices s; ,
and s;40, for z € X from G, connectivity means that G must still be con-
nected, but the definition of H; ;o means that the vertices s;1, for x € X
have been disconnected from the vertices s;41, for y € X. Thus we have a
contradiction, so H; ;19 must have been connected.

We now consider the problem where we have some connected graph H of
order t, r = t — s numbered counters on some subset of the vertices of H,
and repeatedly move a single counter to an adjacent unoccupied vertex. If
such moves can yield any given arrangement of the counters and unoccupied
vertices, then we have our minor; we shall see that graphs H for which some
arrangements cannot be reached have a fairly restricted structure. It is easy
to see that if the contents of any pair of adjacent vertices can be transposed
(with the other vertices unaffected), combinations of those transpositions will
yield all permutations. Trivially a counter can be transposed with an adjacent
unoccupied vertex, so it suffices to show that the counters on any pair of
adjacent occupied vertices can be transposed. Say we wish to transpose
adjacent counters 1 and 2; in many cases we will achieve this by conjugation:
make some series of moves so that the two counters are conveniently placed
to transpose them by a short sequence of moves; make that short sequence;
and make the reverse of the first sequence, restoring the original position
except with counters 1 and 2 transposed.

The first lemma gives just such a local configuration allowing the trans-

position of counters.

Lemma 6.1 If H has a star subgraph in which at least 2 vertices are unoccu-

pied, then any permutation of the counters in that subgraph may be achieved.
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Figure 6.1: Moving counters in a star configuration

Proof If there are fewer than 4 vertices in the star this is trivial. Suppose
there are at least 4 vertices in the star. If the centre of the star is not vacant,
move the counter from there to a vacant vertex of the star (this move can
later be reversed, a conjugation as described above). Then if A is the centre
of the star (vacant), B is another vacant vertex of the star, C' is a vertex
of the star occupied by counter 1 and D is a vertex of the star occupied by
counter 2, as shown in Figure 6.1, we may swap counters 1 and 2 by moving
1 from C' to A then to B; counter 2 from D to A then to C, and counter 1
from B to A then to D. O

We next aim to show that the contents of 2-edge-connected subgraphs
with a few unoccupied vertices can be arbitrarily permuted. First we consider

cases of a single cycle with an additional vertex or edge.

Lemma 6.2 If H has a cycle and some vertex of that cycle is adjacent to
some vertex of H not in the cycle, and either there are at least 2 unoccupied

vertices in the cycle or there is at least one unoccupied vertex in the cycle
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C

O—0O

Figure 6.2: Moving counters in a cycle with adjacent vertex

and the vertex outside the cycle to which some vertex in the cycle is adjacent
is also unoccupied, any permutation of the counters in that cycle may be

achieved.

Proof We may clearly move counters round the cycle to place the unoccu-
pied vertices in any desired positions on the cycle. If there are 2 unoccupied
vertices in the cycle, this means we may place one of them next to the out-
side vertex adjacent to the cycle, then move any counter on that vertex into
the cycle. Thus we need only consider the case where the vertex adjacent to
the cycle is unoccupied. We may arrange for any pair of counters that are
adjacent in the cycle (ignoring unoccupied vertices) to be on either side of
an unoccupied vertex which is adjacent to the outside vertex, as shown in
Figure [6.2. As in Lemma those two counters may be transposed, and

transpositions of adjacent pairs of counters can achieve all permutations. O

Lemma 6.3 If H has a cycle with a chord (i.e., an edge not in the cycle

that joins one vertex of the cycle to another vertex of the cycle) and at least
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Figure 6.3: Moving counters in a cycle with a chord

2 wvertices of the cycle are unoccupied, any permutation of the counters in

that cycle may be achieved.

Proof To transpose any given pair of counters that are adjacent in the
cycle (ignoring unoccupied vertices), move counters round the cycle so that
the vertices at either end of the chord are unoccupied and the two counters
to be transposed are on either side of one end of the chord, as shown in

Figure 6.3 Lemma 6.1 then applies to transpose those counters. a
We now derive a more general result for 2-connected subgraphs.

Lemma 6.4 If H is not a cycle, and has a 2-connected subgraph in which
at least 2 wvertices are unoccupied, any permutation of the counters in that

subgraph may be achieved.

Proof It suffices to show that any pair of counters in the 2-connected
subgraph may be transposed, so consider some such pair of counters; 2-
connectivity implies that they both lie in some cycle. If they lie in a cycle
with at least 2 unoccupied vertices, then Lemma 6.2 or Lemma 6.3 implies
that the counters in that cycle may be arbitrarily permuted. (The require-

ment that H is not a cycle is needed to avoid the case of the 2-connected



CHAPTER 6. EXTREMAL PROBLEM FOR CONNECTIVITY 119

subgraph being a cycle, and there being no additional edges in H to any ver-
tex of that cycle.) If they lie in a cycle with just 1 unoccupied vertex, then
the 2-connected subgraph has some other unoccupied vertex, which must lie
on a path across the cycle (since all vertices of the 2-connected subgraph
not in the cycle must lie on some path across it). Now counters may be
moved on that path so that the unoccupied vertex lies next to the cycle, and
Lemma (6.2 applies.

It thus remains only to consider the case where no cycle (in our subgraph)
on which both the counters to be swapped lie has any unoccupied vertices.
But now consider some unoccupied vertex in our subgraph; it lies on a path
across the cycle, and, since no cycle contains both our given counters and an
unoccupied vertex, at least one of the vertices where the path meets the cycle
is not occupied by one of those given counters. So we may move the counter
on that vertex into the path, causing there to be an unoccupied vertex on

our cycle, a case in which we have seen that the counters can be swapped. O

A 2-edge-connected graph is a tree of 2-connected graphs sharing single
vertices. Applying the above lemmas to those 2-connected subgraphs allows

the following result for 2-edge-connected graphs to be found.

Lemma 6.5 If H is not a cycle, and has a 2-edge-connected subgraph in
which at least 3 vertices are unoccupied, any permutation of the counters in

that subgraph may be achieved.

Proof We prove this by induction on the number of 2-connected compo-
nents in the 2-edge-connected subgraph. It holds where there is just one
such component by Lemma 6.4, so it will suffice to suppose that our 2-edge-

connected subgraph is the union of two 2-edge-connected subgraphs, sharing
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a single vertex, such that the result hold for each of those smaller 2-edge-
connected subgraphs. By conjugation, it will suffice to suppose that the
unoccupied vertices are the common vertex and one vertex adjacent to it in
each smaller subgraph, and show that any permutation with those being the
unoccupied vertices can be achieved. We may also assume that there are
exactly 3 unoccupied vertices.

Let U and V' be the 2-edge-connected subgraphs, v be the common vertex,
¢ be some counter on a neighbour of v in U and d be some counter on
a neighbour of v in V. We claim that any permutation within U can be
achieved; any permutation within V' can be achieved; and we can transpose
c and d. This clearly suffices to prove the result.

Certainly ¢ and d can be transposed, since we have a star as in Lemma 6.1.
We will show that any permutation within U can be achieved, and the cor-
responding result for V' will follow in exactly the same way. If c is the only
counter in U, then the result is trivial. Otherwise, by moving ¢ into V' via v,
we may achieve any permutation of all the other counters of U. But we
may also transpose ¢ with any other counter of U: move that counter into
a cycle with ¢, transpose within that cycle by Lemma and reverse the
original move of the other counter into that cycle. Thus indeed we achieve
any permutation of the counters within U, and so of those in the whole

2-edge-connected subgraph. O

A general connected graph H is a tree of disjoint 2-edge-connected graphs
joined by trees. The following result gives circumstances under which coun-

ters on such a graph may be permuted.

Lemma 6.6 Let H be a connected graph of order t which is not 2-edge-
connected. Let P be the longest path in H with the properties that no edge
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of P lies in a cycle and that dg(v) = 2 for all vertices v of P except the
endpoints of P. Suppose there are r < t — 3 counters on H. If P has no

more than t —r — 1 vertices, then the counters may be permuted.

Proof Let v and v be two adjacent vertices with counters a and b on them.
It will suffice to show that those two counters can be transposed.

First suppose that uv does not lie in a cycle; suppose it lies in a path @
with dy(w) = 2 for all vertices w of @ except for the endpoints of @), where
d(v) # 2. Write |Q| = k <t —r — 1, so there are at least k + 1 unoccupied
vertices of H. The vertices of H may be divided into those to the left of u
(i.e., those in components other than that containing v after the vertex u is
removed) and those to the right of v (defined likewise). If there are £ unoccu-
pied vertices to the left of u and r unoccupied vertices to the right of v, then
{4+ 1r > k4 1. Moving counters appropriately in the part of the graph to the
left of u, and the part to the right of v, this means that even after moving
out of () all counters apart from u and v that can be moved out of (), there
are at least k + 1 — (k — 2) = 3 unoccupied vertices outside of @), so at least
2 such vertices in one half of the graph (excluding @), say the half to the left
of u. Move a and b into that half. If they can go in different branches off the
endpoint of the path in that half, then put them in different branches and
apply Lemma 6.1/ to transpose them; if not, having placed them in the same
branch then move one counter from another branch into the path, and then
again we may easily transpose them.

Now suppose that wv lies in a cycle. Consider the maximal 2-edge-
connected subgraph in which uv lies. If there are 3 unoccupied vertices
in that subgraph, we are done by Lemma If not, consider where the
unoccupied vertices outside of that subgraph are; if the parts of the graph
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they lie in are joined to our subgraph at occupied vertices other than u and v,
they may be moved into our subgraph, and again we are done. So all but at
most 2 unoccupied vertices are outside our subgraph, in parts of the graph
joined to our subgraph either at unoccupied vertices (to which we may sup-
pose no counter of our subgraph may be moved without disturbing a or b)
or at u or v.

If now there is an unoccupied vertex outside our subgraph adjacent to w,
move a to that vertex, then b to u; then a and b are adjacent on an edge
that is not part of a cycle and the previous part of this proof applies; likewise
if there is an unoccupied vertex outside our subgraph adjacent to v. So all
outside unoccupied vertices are in parts adjacent to unoccupied vertices of
our subgraph.

By some movements of the counters on our subgraph, some counter on
that subgraph can be moved out. Consider the walk by which it moves out;
the counter on the last unoccupied vertex of that walk could be moved out
without disturbing other vertices, so that counter must be u or v, say u. But
now v could follow u out along that walk, and as before we now have them

adjacent and not in a cycle. O

In particular, let » = [¢/4]. In order not to be able to permute all the
counters, either H must be a cycle, or it must contain a path with at least
t —r > 3t/4 > 3r vertices that is not part of a cycle and has no branches
except at its ends.

We return now to the original problem of finding minors, where the minors
we will find are K, where r = |t/4] and t is sufficiently large, or (in some
cases) r = t — 4. Only the graphs H just described can occur many times
for io > 17 + 2. If a cycle occurs many times, the only

as graphs H;

1,52

other graphs that can occur many times are paths that are that cycle minus
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one edge, since any edge between long paths in G not adjacent in the cycle
would allow paths P; to be swapped, so we have a long chain of cutsets
where only the cycle and such subpaths occur; in this region, the vertices of
each T; UW; ;41 UT;41 can be divided into those of each path, those between
each pair of adjacent paths, and those hanging off a single path. If a cycle
does not occur many times, consider any graph H that does. In the path in H
with at least 3r vertices, there may be found a ‘central’ region of 2r vertices,
such that there are r vertices to either side of that region in H. Having
r vertices to either side means that the long paths in G can be moved out
of that region as necessary. Thus no graph H,; ;, with any edge in that
central region (or between that central region and the rest of the graph)
other than those of the path in H can occur many times (otherwise arbitrary
paths could be transposed), so there is a long chain of cutsets in G, within
which the vertices of T; U W; ;11 U T4 can be divided into the paths of the
central region, the vertices to each side of it, the vertices between each pair
of adjacent paths in the central region, and those hanging off a single path
of the central region. Where H is a cycle we will find a K, minor; otherwise,
if G does not have such a minor then it must have the form just described
and large parts of G must have the structure given in Lemma [6.8|

A graph G is said to be (x1, 22, Y1, y2)-linked if there exist vertex-disjoint
paths in G from x; to y; and from x5 to y,. For example, if xy and x5
are endpoints of paths in S;, and ys and y; are endpoints of those respec-
tive paths in S;, and the region of G' between S; and S; bounded by those
paths is (x1, z2, 91, y2)-linked, then the paths may be swapped. This means
that if G does not have a K, minor then various regions of G must not be
(21, T2, Y1, y2)-linked.

Thomassen [65] characterised non-(x1, 2, 41, y2)-linked graphs as follows:
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Theorem 6.7 (Thomassen [65]) Suppose G is not (x1,x2,y1,ys2)-linked.
Then G is a subgraph on the same vertex set of a graph G’ of the following
form:

G' is a planar graph, with unbounded face the 4-cycle x1x2y1y2 and with
the other faces forming a triangulation of that 4-cycle, in which all 3-cycles
are facial cycles, with the addition for each 3-cycle S of a possibly empty com-
plete graph K°, disjoint from the planar graph and the other such complete
graphs, joined to all the vertices of S.

Suppose some part of our graph G (which we recall has connectivity ¢) is
not (x1, 2, y1,ys)-linked. Then it must have the above form. If any of the
complete graphs K (or subgraphs of them) are present, this makes the part
of G at most 3-connected; so any such K must intersect the boundary of our
part of G. We will show that they do not go too far inside the boundary, so
we have a smaller region of GG which is planar, and so has average degree less
than 6. Such regions may be joined up to cover all of H if it is a cycle, or the
central part of H if it is not. In the former case, we will find that a large part
of G with small boundary has average degree less than 12, a contradiction if
t > 12. In the latter case, we would also need to consider the regions to the
left and right to conclude the required minor to be present; I conjecture that
in that case indeed there must be a K, minor if ¢ is sufficiently large, but do
not have an argument to prove anything beyond the information about the
structure of the central region of G' given below.

The following result provides a basic planar region of G.

Lemma 6.8 Let t > 12. Consider a part of the long chain of cutsets de-
scribed above, containing at least 20 of the cutsets (including all the W; ;11 be-

tween those cutsets, and all the T; attached to them). Consider, within that
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part of the chain, 6 successive long paths Py, Py, P3, Py, Ps, Ps in the central
part of H as described above. Let the path P; start at p; and end at q;. Sup-
pose that the region bounded by Py and Py is not (p1, gs, ps, ¢1)-linked. Then
the region bounded by P3, Py and the first and last cutsets left after removing
the first and last 9 cutsets from the part of chain given (this region being
taken to include any parts of the graph attached only to Ps, only to Py, or
being part of the T; at either end attached only to the relevant endpoints) is

planar.

Proof The larger region has the structure of Theorem 6.7, so to prove that
the smaller region is planar it suffices to prove that none of the K intersect
the smaller region.

Consider one of the K. It intersects the boundary of the larger region;
either Py or Py (but not the endpoint of either path, since those endpoints are
the vertices of the 4-cycle in the given form of the region), or the endpoints
of the other paths.

If it intersects P, say, then two of the three points that cut off that K*°
are in Pj; thus it cannot also intersect Py (since then two of the points cutting
off that K would also be in Ps). We have more than 3 vertex-disjoint paths
from Ps to P, (by t-connectivity); all of these pass through P, so our K*
cannot include the whole of P or of any other path between P; and P (since
it can be separated from the rest of the graph by 3 vertices). Thus it may
intersect P,, but cannot reach Pj3, so no part of it is in the smaller region;
and this likewise holds if it intersects Py rather than P;.

Now suppose it contains some endpoints of some paths; but not, as dis-
cussed above, both endpoints of any path. Say it contains the upper endpoint

of some path. There is a path from Pg to P; within the subregion of the upper
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three cutsets, passing through all intermediate paths; so the whole of the K*°
is within that region, or the path from Ps to P; intersects the K and so one
of its 3 boundary points is within that region. Considering likewise the next
two triples of consecutive cutsets, we see that the K cannot extend beyond
them, so indeed the smaller region describes intersects no K° and is planar.

O
This yields our result for the case where H is a cycle.

Theorem 6.9 Given t > 12 there exists p(t) such that the following asser-
tion holds.
Suppose that the graph H, a cycle, appears at least p(t) times as Hs; ;42

i our chain of cutsets. Then K;_4 < G.

Proof Suppose we do not have our minor. Given ¢t — 4 long paths, we may
consider a region with 2 paths present surrounding 4 paths absent. Then by
Lemma 6.8 the region between the central pair of paths there is planar; the
choice of the central pair there was arbitrary, so we have a long region in
which the subregion between each pair of consecutive paths is planar. Now
each vertex gets contributions to its degree from at most 2 of those regions,
so the average degree in the overall long part of the graph is less than 12. But
this region is long, and has a boundary of only 2¢ vertices, so some interior

vertex has a degree of at most 12, contradicting the connectivity. O

This result and Lemma 6.5 together imply that if ¢ > 12 and any 2-edge-
connected graph H occurs many times then K; 4 < G. Thus if K, 4 A G

then any graph H that occurs many times has a bridge.



Part 11

Directed Graphs
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Chapter 7

Introduction to directed graphs

In this part of this dissertation, we consider some extremal problems relating
to directed graphs that are simple to state but surprisingly difficult to solve.

Caccetta and Haggkvist [6] made a conjecture which includes, as one
case, that an oriented graph on n vertices with all vertices of out-degree at
least n/3 must have a directed triangle. Various bounds on the minimum out-
degree required have been found, but the conjecture remains unproved, even
if we make the stronger requirement that both in-degrees and out-degrees
must be at least n/3. In Chapter 8, we observe that a natural approach to
the problem leads to another simple conjecture, which also seems difficult to
prove, but does not seem to have been previously discussed.

A closely related problem is the conjecture of Seymour that every ori-
ented graph contains a vertex with a large second neighbourhood. The second
netghbourhood of a vertex z is the set of all out-neighbours of out-neighbours
of x, that are not themselves out-neighbours of z, and = has a large second
neighbourhood if its second neighbourhood is at least as large as the set of
its out-neighbours. This conjecture clearly implies that, if every vertex of

an oriented graph has in-degree and out-degree at least n/3, then the graph
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contains a directed triangle. The specific case for tournaments, known as
Dean’s conjecture [12], has recently been proved [19, 23].

The classic result of Erdés and Szekeres [17] is that in any sequence of
k*+1 integers (or reals, etc.) there is a monotone subsequence of length &+ 1.
Many variations on this problem have been considered [60], but apparently
not the following one: in a sequence of length n > k? + 1, what is the
minimum number of monotone subsequences of length k+17 We consider this
problem in Chapter 9. We give a conjecture as to the answer to this problem,
supported by computational evidence, and a conjectured characterisation of
all the extremal sequences for n sufficiently large in terms of k, which we
prove correct under certain assumptions.

This problem is equivalent to a problem on tournaments (which shows
more of the natural symmetry of the problem): given two transitive tour-
naments on the same n vertices, what is the minimum number of sub-
graphs Kj.; on which the tournaments entirely agree or entirely disagree?
This formulation of the problem, together with standard results on the num-
ber of monochromatic triangles in a 2-coloured complete graph [20, 34], yields
a proof of the correctness and completeness of the characterisation of the ex-

tremal sequences for £k = 2 and all n.



Chapter 8

Directed triangles

This short chapter has no results but we give a new conjecture (Conjec-
ture related to some unsolved problems that have been previously posed.

Caccetta and Haggkvist [6] made the following conjecture:

Conjecture 8.1 (Caccetta and Haggkvist [6]) Any digraph on n wver-
tices, all of which have out-degree at least r, contains a directed cycle of

length at most [n/r].

Despite the simplicity of this conjecture, it remains unproved apart from
some particular cases. One simple case which remains unproved is where

r=n/3:

Conjecture 8.2 Any oriented graph on n wvertices, all of which have out-

degree at least n/3, contains a directed triangle.
Even the following weaker conjecture remains unproved:

Conjecture 8.3 Any oriented graph on n vertices, all of which have in-

degree and out-degree at least n/3, contains a directed triangle.
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Some bounds (not as good as n/3) have been found on the minimum out-
degree (or in-degree and out-degree) required to force a directed triangle,
by Caccetta and Héaggkvist [6], by de Graaf, Schrijver and Seymour [11], by
Bondy [5] and by Shen [59]. (It is clear that n/3 is best possible; consider
placing the vertices in a cyclic order, with edges from each vertex to the next
[n/3] — 1 vertices.)

Define the second neighbourhood of a vertex x in an oriented graph to be

e = (U )
yelt (z)

The following conjecture is due to Seymour:

Conjecture 8.4 (Seymour) In any oriented graph, there is a vertex x with
Tt (2)] > [T (x)]. (Such a vertex is said to have a large second neighbour-

hood.)

It is clear that Conjecture implies Conjecture 8.3. The specific case of
Conjecture 8.4/ for tournaments, known as Dean’s conjecture [12], has been
proved by Fisher [19] and then more simply by Havet and Thomassé [23],
but the general case remains open.

One natural way to attack Conjecture (8.2 is by induction. Suppose that
G is a minimum counterexample, say of order n with all out-degrees equal
to [n/3]. If n = 3k 4+ 1 then removing a vertex reduces out-degrees by at
most 1; as [n/3] —1 = [(n — 1)/3], G is not in fact minimal. If n = 3k
this approach does not lead to any simple arguments. If n = 3k + 2, then
minimality of G implies that removing any two vertices reduces some out-
degree by more than 1. Thus every two vertices must have a common in-

neighbour. This leads to the following new conjecture:
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Figure 8.1: Graph with 14 vertices forced by a single edge

Conjecture 8.5 In any oriented graph (of order at least 2) in which every

two vertices have a common in-neighbour, there is a directed triangle.

An example of an oriented graph in which every two vertices have a
common in-neighbour is a tournament on 7 vertices, where each vertex has
edges to those that are 1, 2 or 4 after it in a cyclic order.

Suppose we consider a hypothetical oriented graph in which every two
vertices have a common in-neighbour, but which does not contain a directed
triangle. Consider some edge in this graph, say 1 — 0. 0 and 1 have a
common in-neighbour, which must be some other vertex, say 2. 2 and 0
have a common in-neighbour, which must be some other vertex, say 3. This
argument may be repeated for appropriately chosen pairs of vertices x and y,
such that no z in the part of the graph already found could be a common

in-neighbour of x and y without causing either a directed triangle or a pair of
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edges u — v, v — u to be present. Depending on the pairs of vertices chosen,
various graphs can be forced in this way; such a graph, with 14 vertices, is
illustrated in Figure8.1.

If Conjecture 8.5is false, one could then ask whether there is any constant
upper bound on the girth of an oriented graph in which every two vertices

have a common in-neighbour.



Chapter 9

Monotone subsequences

9.1 Introduction

A well-known result of Erdés and Szekeres [17] may be expressed as follows:

Theorem 9.1 (Erdds and Szekeres [17]) Let n and k be positive inte-
gers. If n > k*+ 1, then in any permutation of the integers {0,1,...,n—1}

there is a monotone subsequence of length k + 1.

This problem leads to many variations, a survey of which has been made
by Steele [60]. Here we consider an extremal problem that arises as a vari-
ation; this problem was posed by Mike Atkinson, Michael Albert and Derek
Holton. If n > k% + 1, then we know there is at least one monotone subse-
quence of length k£ + 1; how many such sequences must there be? We write
my(S) for the number of monotone subsequences of length & + 1 in the per-
mutation S. This problem is related to a question of Erdds [14] in Ramsey
theory asking for the minimum number of monochromatic K; subgraphs in

a 2-coloured K,; Erdds’s conjecture about the answer to that question (that

134
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the minimum was given by random colourings) was disproved by Thoma-
son [62].

Some upper and lower bounds are obvious. For an upper bound, note that
in a random permutation, any given subsequence of length £+ 1 is monotone

with probability 2/(k 4+ 1)!. Thus some permutation has at most

arnlit)

monotone subsequences of length k£ + 1. For a lower bound, note that any
subsequence of length k? 4+ 1 must have a monotone subsequence of length
k+1, and any sequence of length k+1 is in ("k}l:l) sequences of length k24-1.

Thus there are at least

G108

k2—k k41
monotone subsequences of length k + 1.
A simple example will, in fact, give a better upper bound than a random
permutation; this bound is, for large k, half way (geometrically) between the

upper and lower bounds just given. Consider the permutation

In/k] =1, [n/k] —2,...,0,
12n/k] — 1, |20/k] — 2,..., |n/k],

ey

n—1n—-2... [(k—1)n/k]|.

This permutation is made up of £ monotone descending subsequences, each of
length |n/k| or [n/k]; clearly it has no monotone ascending subsequences of
length k+1, and any monotone descending subsequences it has of length k+1
must lie entirely within just one of the k£ monotone descending subsequences

into which it is divided. Thus the number of monotone subsequences of
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length k£ + 1 is

(n mod k)(L”J/FkD + (k — (n mod k))(i”ﬂ) ~ %(kg)

Let this number be known as M (n). I conjecture that this is in fact the

minimum number of monotone subsequences of length &k + 1.

Conjecture 9.2 Letn and k be positive integers. In any permutation of the
integers {0,1,...,n — 1} there are at least My(n) monotone subsequences of

length k + 1.

It would also be interesting to know the extremal configurations. It ap-
pears from computation that the behaviour for £ = 2 is entirely different from
that for £ > 2 (although I do not have a proof that My(n) is the correct ex-
tremum, or that the conjectured sets of extremal configurations are complete,
except for k = 2). For k = 2, n even, there are 2"/ extremal configurations;
for k = 2, n odd, there are 2"~! extremal configurations. These configura-
tions are described in Section 9.2l Some of these configurations have both
ascending and descending monotone subsequences of length k+1. For k£ > 2,
the extremal configurations, provided n is sufficiently large in terms of k, ap-
pear to be more restricted; it seems that no extremal configuration has both
ascending and descending monotone subsequences of length £+ 1. These con-
figurations are described in Section 9.3; it is shown that, if indeed no extremal
configuration has both ascending and descending monotone subsequences of
length k + 1, the characterisation is complete and correct for n > k(2k — 1).
The hard part of the main result of this section, Theorem 9.8, is that the
complicated characterisation of extrema (subject to the constraint that all
monotone (k + 1)-subsequences go in the same direction) is a complete and

correct characterisation of all extrema; it is straightforward to see that the
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constraint implies that there cannot be fewer monotone (k+ 1)-subsequences
than in the given extrema. (Computation suggests that—apart from the
exceptional case of k = 3, n = 16, where there are also some extremal con-
figurations not as described—all extremal configurations do indeed satisfy
the given constraint.) The number of extremal configurations (under this
assumption) may be described in terms of the Catalan numbers [7, 8.

The problem may be seen to be equivalent to a problem on directed
graphs as follows. Consider a permutation pg, p1, ..., pn_1. Let A be a
transitive tournament on n vertices, vy, v1, ..., vp—1, With an edge v; — v;
for all © < 7. Let B be a transitive tournament on the same vertices, with
an edge v; — v; if and only if p; < p;. Now a monotone ascending subse-
quence of length k41 corresponds to a K., subgraph on some subset of the
same vertices, all of whose edges go in the same direction in both A and B;
and a monotone descending subsequence of length k£ + 1 corresponds to a
K1 subgraph on some subset of the same vertices, all of whose edges go in
opposite directions in A and B. Thus the problem is equivalent to: given two
transitive tournaments on the same set of n vertices, what is the minimum
number of K}, subgraphs on which the edge directions of the two tourna-
ments entirely agree or entirely disagree? Furthermore, this formulation of
the problem is symmetrical in A and B. In general, the problem has the
following symmetries, which appear naturally in the formulation in terms of

tournaments:

e The order of the permutation may be reversed (equivalent to reversing

the order on A); the new permutation is p,_1, pn—2, .-, Do

e The value of p; may be replaced by n — 1 — p; (equivalent to reversing

the order on B).
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e The permutation may be replaced by the permutation qq, ¢1, ..., ¢n_1,
where ¢,, = i (equivalent to swapping A and B). This permutation is

the inverse permutation to pi, pa, ..., Pn.

Combinations of these operations may also be applied; the symmetry group
is that of the square, the dihedral group on 8 elements.
A paper based on this chapter has been published in The Electronic Jour-

nal of Combinatorics as [40].

9.2 The case k=2

We will see that, for k = 2, all permutations with a minimum number of

monotone 3-sequences have the following form:

Theorem 9.3 Ifn =1, the extremal permutation is 0. Ifn = 2, the extremal
permutations are 0,1 and 1,0. If n > 2, all extremal sequences have the
form L,0,n —1,R or L,n — 1,0, R, where L and R have lengths |n/2] — 1
or [n/2] — 1 and L, R is an extremal permutation of {1,2,...,n — 2} (that
18, the result of adding 1 to each element of an extremal permutation of

{0,1,...,n—3}). All such permutations are extremal.

It is clear that this yields 2™? extremal permutations for n even and
2"~! extremal permutations for n odd. For n even, there is a simple noninduc-
tive description: if the permutation is pg, p1, ..., pn_1, then, for 0 <t < n/2,
we have that p; and p,_1_ take the values (n/2) — 1 —t and (n/2) + ¢, in
some order. Table 9.1/ shows the extremal permutations for n < 6.

The sequences in Theorem 9.3/ all have 0 and n — 1 adjacent. It is easy
to see that Theorem is a correct characterisation of extremal sequences

with that property.
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Table 9.1: Extremal permutations for n < 6

n=1

n=2 01 10

n=3 021 102 120 201

n =4 1032 1302 2031 2301

n=5| 10432 20413 23041 30412
13042 20431 23401 31042
13402 21043 24013 31402
14032 21403 24031 34012

n=6[2105431240513|310542]340512
2150431245013 |1315042[345012

139

Lemma 9.4 Suppose n > 2 and that some extremal permutation has 0 and

n — 1 adjacent. Then all extremal permutations with 0 and n — 1 adjacent

are as described in Theorem 9.3, and all such permutations are extremal.

Proof Without loss of generality, suppose a permutation with 0 and n — 1

adjacent is L, 0,n—1, R; call this permutation S. Suppose that L has length ¢

and R has length r. All monotone subsequences of length 3 in L, R are also

such subsequences of S. There are no monotone subsequences of .S containing

both 0 and n—1. There are no monotone subsequences of S of the form a, 0, b

or a,n —1,b, with a € L and b € R. If, however, a precedes b in L, exactly

one of a,b,0 and a,b,n— 1 is monotone; likewise, if a precedes b in R, exactly

one of 0,a,b and n—1,a,b is monotone. Thus my(S) = mo(L, R) + (g) +(3).

This is minimal when |[¢ —r| < 1.

2
a
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Consider again the relation to tournaments described in Section Sup-
pose we colour an edge red if the two tournaments agree on the direction of
that edge, or blue if the two tournaments disagree on the direction of that
edge. The problem is then to minimise the number of monochromatic trian-
gles. (However, we cannot use any 2-colouring of K, only one arising from
two tournaments in this manner.) Goodman [20] and Lorden [34] found that
the number of monochromatic triangles depends only on the sequence of red

(or blue) degrees:

Theorem 9.5 (Goodman [20] and Lorden [34]) Let K,, be coloured in
red and blue. Let d.(v) be the number of red edges from the vertex v. Then

there are exactly

(5) - 3T a1 -

monochromatic triangles.

This theorem allows us to prove correct our characterisation of extremal

configurations.

Proof of Theorem 9.3 for n even The canonical extremum from Sec-
tion [9.1 is of this form, and has My(n) = 2(”?/’2) monotone subsequences of
length 3. In the coloured graph corresponding to this permutation, each ver-
tex has red degree equal to either [(n —1)/2] or [(n — 1)/2], so the graph
minimises the number of monochromatic triangles. Thus all the permuta-
tions for n even described in Theorem 9.3 are indeed extremal. Also, in the
coloured graph corresponding to an extremal permutation pg, p1, ..., Pn_1,
all vertices must have red degree either [(n —1)/2] or |(n — 1)/2]; in par-
ticular, the vertices corresponding to the values 0 and n — 1 must have such

red degrees. This means that 0 and n — 1 must each be the value of one of
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P(n/2)—1 and py /9, so they are adjacent, and the result follows by Lemma
O

This method does not apply quite so simply for n odd, where the graphs
corresponding to extremal permutations do not minimise the number of
monochromatic triangles over all colourings (that is, the colourings min-
imising the number of monochromatic triangles do not correspond to pairs
of transitive tournaments). However, the colourings are sufficiently close to

extremal that with a little more effort the method can be adapted.

Proof of Theorem (9.3 for n odd The canonical extremum from Sec-
tion 9.1]is of this form, so Ms(n) monotone subsequences of length 3 can be
attained. We will show that this is indeed extremal, and that in all extremal
permutations 0 and n — 1 are adjacent, so that the result will then follow by
Lemma 9.4.

Suppose we have some extremal permutation py, pa, ..., p,, and let £(v)
be the location of the value v; that is, py,) = v. Let the vertex corresponding
to the position £(v) with value v also be known as v. Let d,.(v) and dy(v)
be the numbers of red and blue edges, respectively, from the vertex v; put
da(v) = 1|d,(v) — dy(v)|. Observe that d,(v)(n — 1 —d,(v)) = d,(v)dy(v) =
(25%)? — dg(v)?, so, by Theorem 9.5, the number of monochromatic triangles

then is
(3) -1

Thus, we wish to minimise Y dq(v)?. In the canonical extremum this takes

the value ”T_l

Suppose 0 < v < (n—1)/2. Let L = {u : ¢(u) < ¢(v)} be the set of
values to the left of v, and R = {u : ¢(u) > £(v) } be the set of values to
the right of v. Put further L, = {ue L :u<v}, Ly ={uel:u>v}



CHAPTER 9. MONOTONE SUBSEQUENCES 142

,={ueR:u>v}and R, ={ue R:u<v}. Then we have d,(v) =
|L,| + |R,| and dy(v) = |Ly| + | Rp|, so

d;(v) — dyp(v) = |R;| — |Ry| — |Lo| + Lo | = (IR — [L]) + 2(|L.| — | Rs]).

Now
|R| — |L| = (n —-1- é(v)) —l(v) =2 (”—_1 - E(v)) ,

2

and
1L, — |Ryl| < |Lo URy| =,
s0 dg(v) > max{0, |25 — {(v)| — v}. Likewise, for (n—1)/2 <v <n—1, we
have dq(v) > max{0, |2+ — {(v)| — (n — 1 —v)}. Define r(j) by r(j) = j for
0<j<(n—-1)/2andr(j)=n—1—jfor (n—1)/2 <j <n-—1,so we have
n—1

> —r(’u)}.

For 0 < j < (n—1), put S(j) = {3 :|%* — 4] <r(j)}. Thatis, S(j)

dq(v) > max {O,

—{(v)

is the set of possible value of ¢(j) for which our lower bound on d,4(j) would

be 0. We then have

) Z{n=1/22j2r@) ) gSHH= > L
" ngs

Adding over all v and reversing the order of summation then gives

Sdiw) = S {vir() <4 ) € S6) -

0<j<(n—1)/2
For 0 < j < (n —1)/2, observe that |S(j)| = 2j + 1, whereas |[{v : r(v) <

jH =2j42 Thus ) dg(v) > %5, and equality requires that each |[{v :

r(v) < j,l(v) € S(j)}| equals 1, for 0 < j < "T_l Now Y, d4(v)? >

>, da(v), with equality only if all terms are 0 or 1. So any extremum must

have £(0) and ¢(n — 1) both equal to 25+ or 25+ + 1, with one of them equal

n—1

to2

. 50 0 and n — 1 are adjacent. O
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9.3 The case k£ > 2

For k > 2, it seems that, for n sufficiently large, the permutations with a
minimum number of monotone (k + 1)-subsequences have only descending,
or only ascending, monotone subsequences of that length; making this as-
sumption, we can give a characterisation of the extremal permutations for
n > k(2k — 1) (which appears to be sufficiently large, except for k = 3,
n = 16, where there are also some other extremal permutations). It is easy
to see that this condition is equivalent to the permutation being divisible into
(at most) k disjoint monotone descending subsequences, or k disjoint mono-
tone ascending subsequences. If it can be divided into k disjoint monotone
descending subsequences, there cannot be a monotone ascending (k + 1)-
subsequence, since such a sequence would have to contain two elements from
one of the k£ descending subsequences. Conversely, if it contains only de-
scending subsequences of length k£ + 1, it can be divided into k& descending
subsequences explicitly; similarly to one proof of Theorem 9.1, form these
subsequences by adding each element in turn to the first of the subsequences
already present it can be added to without making that subsequence nonde-
scending, or start a new subsequence if the element is greater than the last
element of all existing subsequences. Any element added is at the end of an
ascending subsequence, containing one element from each sequence up to the
one to which the element was added, so having k£ + 1 subsequences would
imply the presence of a monotone ascending subsequence of length £+ 1, a
contradiction.

The form of the extremal permutations (subject to the supposition de-
scribed) is somewhat more complicated than that for £ = 2. We describe
the form where all the monotone (k + 1)-subsequences are descending; the

sequences for which they are all ascending are just the reverse of those we
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describe. If the k subsequences are of lengths ¢y, fs, ..., {; (where some of
the ¢; may be 0 if there are less than k subsequences), there are at least

> (:4)

—~\k+1
monotone subsequences of length £ + 1. For this to be minimal, convexity
implies that [n/k| < ¢; < [n/k] for all ¢; in particular, there are k sub-
sequences, and no ¢; is 0, for n > k. To make the ordering of the ¢;
definite, order the k£ subsequences by the position of their middle element
(the leftmost of two middle elements, if the sequence is of even length).

There are ( choices of the /¢; satisfying these inequalities. If they

k
n mod k)
are satisfied, there are at least My (n) monotone (k + 1)-subsequences, and
exactly that number if and only if there is no monotone descending (k + 1)-
subsequence that takes values from more than one of the £ subsequences.

Puts, => . i< {;. For each choice of the ¢;, we have a canonical extremum

similar to that given in Section |9.1:

81—1,51—2,...,0,
82—1782—2,...,81,

ey

sk—l,sk—2,...,sk,1.

(where 0 = s¢ and s = n).

We will describe the extrema with the given ¢;, supposing n > k(2k — 1).
To do so we will need some more notation. Write C), = %H(Zkk) for the
k™ Catalan number. It will then turn out that there are exactly C,fk’Q ex-

trema with the given ¢;. Thus, the total number of extremal sequences,

subject to the constraint that all monotone (k + 1)-subsequences go in the
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same direction, and subject to n > k(2k — 1), will be

k
2) 2](:—2.
(n mod k) Ci

The extrema are closely related to the canonical extremum with the
given /;. In each extremum with those ¢;, the ¢; — (2k — 2) middle val-
ues of each of the £ monotone subsequences take the same values, in the
same positions, as they do in the canonical extremum; the k£ — 1 values at
either end of each subsequence can vary, as can their positions.

The variation is described in terms of sets C'(k,p) of monotone descend-
ing sequences of k — 1 integers; |C(k, p)| = Cj. This set is defined as follows:
C(k,p) is the set of monotone descending sequences ¢y, ¢, ..., ¢x_1 of in-
tegers, p — 2k + 3 < ¢; < p for all i, such that if dy, dy, ..., di_1 is the
monotone descending sequence of all integers in [p — 2k + 3, p] that are not
one of the ¢;, then ¢y, ¢co, ..., cx_1, di, do, ..., dx_1 has no monotone de-
scending subsequence of length k + 1.

There are various equivalent characterisations of C'(k,p):

Lemma 9.6 Define C(k,p) to be the set of monotone descending sequences
c1, Co, .., Ck—1 of integers, such thatp —k —i+2 <c¢; <p—2i+ 2 for all
1 <i < k—1. Define Cy(k,p) inductively as follows. Let Cy(2,p) = {p—1,p}.
For k > 2, let Cy(k,p) = {(c1,¢9,...,¢c,1) :p—k+1 < ¢ <p g <
c1, (Co,c3,. .. c1) € Co(k—1,p—2) }. Then Cy(k,p) = Cao(k,p) = C(k,p).
Furthermore, |C(k,p)| = Ck.

Proof Of these definitions, C' is the one that will be relevant later in proving
the characterisation of extremal permutations correct. C; will be seen to be
a direct description of (', and Cy will be seen to be an inductive description

of Ci. (5 allows the number of such sequences to be calculated through
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recurrence relations, which will yield the last part of the lemma. Observe
that all these definitions clearly have the property that C'(k,p;) is related to
C(k, p2) simply by adding p; — ps to all elements of all sequences in C'(k, ps).
We first show that Cy(k,p) = C(k,p). First consider a sequence ¢y, ¢o,
oy g1 in Cy(k,p), letting dy, do, ..., dr—1 be the monotone descending
sequence of all integers in [p — 2k + 3,p] that are not one of the ¢;. If
the sequence ¢y, ¢, ..., cx_1, dy, da, ..., dr_1 has a monotone descending
subsequence of length k£ + 1, suppose that subsequence has ¢t values among
the ¢;. The last of these is at most p — 2t + 2. The interval [p — 2k + 3, p]
contains 2k—2t—1 values smaller than p—2t+2; of these, at least k—1—¢ must
be among the ¢; (namely, ¢;11, ¢iio, ..., Ck_1), SO at most k — ¢ are among
the d;, so the monotone subsequence has length at most k, a contradiction.
Thus C;(k,p) C C(k,p). Conversely, consider a sequence ¢y, Ca, ..., Cx_1
in C(k,p), and let d; be as above. Clearly ¢; > p — k — i + 2 for all g
otherwise we would have ¢,y < p — 2k + 3. If we had ¢; > p — 2i + 2, then
there would be at least 2k — 2i lesser values in the interval [p — 2k + 3, p),
of which k — 1 — 4 are among the ¢;, so at least k — 4 + 1 are among the d;;
together with ¢y, ¢, ..., ¢;, this yields a monotone subsequence of length at
least k + 1, a contradiction. Thus C'(k,p) C Ci(k,p).

We now show that Cy(k,p) = Ca(k,p). We do this by induction on k; it
clearly holds for £ = 2 and all p. Suppose that Cy(k —1,q) = Co(k — 1,q)
for all ¢. If ¢, co, ..., cr—1 is in Cy(k,p), then p — k+ 1 < ¢; < p, and,
since ¢; > ¢o and ¢, ¢3, ..., g1 isin Co(k — 1,p —2) = C1(k — 1,p — 2),
the sequence of the ¢; is descending and (p —2) — (k—1)—(i—1)+2 =
p—k—14+2<¢<(p—2)—2(i—1)+2=p—2i+2forall2<i<k—1,s0
the sequence is in C(k, p). Conversely, if ¢1, ¢o, ..., ¢x—1 is in Cy(k,p), then

for2<i<k—1lwehavep—k—i+2=(p—-2)—(k—1)—(—-1)+2<
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¢ <p—2i+2=(p—2)—2(i — 1)+ 2, so that co, ¢3, ..., ¢t_1 is in
Ci(k—1,p—2) = Cy(k — 1,p — 2), so the sequence is in Cy(k,p).

Finally we show that |Cy(k,p)] = Ck. For 1 < j < k, put ¢;; =
{ (c1,¢2,...,cx1) € Co(k,p) : ¢1 = p—k+ j}| (which as observed above
does not depend on p). We then have

k
Cok,p)| =) cry
j=1

and the recurrence
min{j,k—1}

Ckj = E Ck—1,i5

i=1
where co; = c22 = 1. Observe that the recurrence implies that cpr—1 =

Crlk = ’C2(k? - 1717)‘-

Put
ktj—3\ 2 Bei—1
dy,j = .
j_l =0

with dy; = 1. We claim that ¢, ; = dj; for all & > j; we prove this by
induction on j. Clearly ¢, = 1 and ¢y = k — 1. Suppose that j > 2 and
Ckj—1 = dyj—1 for all k. For k > j we then have cii1; — ¢k j = Cry1-1 =

korl,jfl and

k+j-3 (ki1
dk+1,j—dk,j—< / ) ( i1 ):dk+1,j—1-

i=1
Also, dj; — ¢j; = djj — ¢ = djg — diy = (V) = (V) = (V) =
(7)) = (¥5) = (¥7) = 0. Thus, by induction on k, ¢x; = dy; for the
given j and all k, and by induction on j this holds for all j.

It now remains only to show that dj ;—1 = Cj_; for all k. For this, observe

that Cy_1/ (%) = (32 /k(35) = 2(2k — 3)/k(k — 1). We have

<2k 4) bl (k+z—1)
dg -1 =

SM
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§ (k +§— 1) _ (2:_—44)

=0

and

so that dy—1 /() =1 (N/C) =1k —2)(k = 3)/k(k - 1) =

k—2 k—4 k—2
2(2k — 3)/k(k — 1) = Cx_1/(°F7)). Thus dis—1 = Cy_1. m

We now describe the conjectured extrema with given ¢;. We define sets S;
of integers: put So ={i:0<i<k-2};put Sy ={i:n—k+1<i<n—-1};
and for 1 < j<k—1,putS; ={i:s;—k+1<i<s;+k—2} Put
S = U%_yS;. Then S is the union of the sets of the k — 1 values (or positions)
at either end of each of the subsequences in the canonical extremum.

Write the canonical extremum as dy, dq, ..., d,_;. We describe an ex-
tremum ¢, ¢y, ..., ¢,—1. Fori € S, we have ¢; = d;; observe (as would be ex-
pected, given the symmetries of the problem) that [0,n—1]\S = {d; : i1 &€ S }.

Fori <i<k—1,let A; and B; be arbitrary elements of C'(k, s; + k — 2);
let A; be S;\ A; in descending order, and let B] be S;\ B; in descending order.
Given this choice of A; and B; (there being C?*~2 possible such choices), we
can now describe the extremum associated with the A; and B;.

We will define sets L; for 1 <i¢ < kand R;for0 <i<k—1. Put L1 = Sy
and Ry = Sg. For 1 <i<k—1,put R,y = A; and L;;; = A,. Now, the
values of ¢; for i € Sy are the values of Ry in descending order; the values
of ¢; for i € Sy are the values of L, in descending order; the values of ¢; for
i € Bj are the values of L; in descending order; and the values of ¢; for i € B
are the values of R; in descending order. Observe that this sequence can be
divided into k disjoint monotone descending subsequences, of the required
lengths; the i of them, for 1 <i < k, contains R;_;, the fixed values ¢; for
siii+k—1<j<s;—k,and L;. Call this subsequence T;.

An example extremum with n = 17 and & = 3 is shown in Table
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Table 9.2: Structure of an example extremal permutation

149

n 17

k 3
Extremum 54212109871663 1514131110
by, £y, U3 5, 6,6

S0, S1, S2, S3

0,5, 11, 17

Canonical extremum

432101098765161514131211

Fixed and variable values

XX2XXXX87TXXXX1413XX

So, S1, Sa, Ss {0,1}, {3,4,5,6}, {9,10,11,12}, {15, 16}
S {0,1,3,4,5,6,9,10,11,12, 15, 16}

A, A, {5,4}, {12,9}
Bi, B, {5,4}, {11,10}
AL AL {6,3}, {11, 10}
B,, B, {6,3}, {12,9}

L1, Ly, Ly {1,0}, {6,3}, {11, 10}

Ro, Ri, Ry {5,4}, {12,9}, {16,15}

T17 T27 T3

54210,129876 3,16 1514 13 11 10
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along with the various parameters for its structure described above.

It remains to prove that this sequence has the expected number of mono-
tone subsequences of length k& + 1, and that all extrema (subject to the se-
quence being divisible into & disjoint monotone descending subsequences)
have that form. The description of the sequence makes sense for n >
k(2k — 2), and Theorem 9.7 applies for all such n, but if n < k(2k — 1)

there can be other extrema not of the form described.

Theorem 9.7 The sequences just described have exactly My(n) monotone

subsequences of length k + 1, all of them descending.

Proof By the division into k disjoint monotone descending subsequences, of
lengths /;, there are no monotone ascending subsequences of length k+1, and
there are at least My (n) monotone descending subsequences of length k + 1
(that is, those subsequences entirely within any one of the & subsequences
into which the sequence is divided). Thus it is only necessary to prove that
there is no monotone descending subsequence of length £+1 containing values
from more than one of the £ subsequences.

If j > ¢+ 2, then the whole of T} is to the right of the whole of Tj,
and all the values in T are greater than all the values in 7;. Thus any
additional monotone subsequence of length k& + 1 can contain values from
only two of the T}, say T; and T;,. If it contains ¢, from 7; and ¢, from T},
we still have p < ¢ except possibly for ¢, from L; and ¢, from R;, and
¢p < ¢4 except possibly for ¢, from R;_; and ¢, from L, ;. Thus this sequence
contains no values from the fixed central regions of T; and T}, 4; if it contains
a value from R; 1, then it contains a value from L;,;, and all values are
from R, ; and L, q; if it contains a value from L;, then all values are from

L; and R;. But a monotone descending subsequence of length k£ + 1 in
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R;_, followed by L;;; would be such a subsequence in A; followed by A,
contradicting the definition of C(k,p). Likewise, a monotone descending
sequence (of values, as the position goes up) in L; and R; may be seen to be
equivalent to a monotone descending sequence of positions, as the value goes
up, in the positions (going down) of L; followed by those of R;; that is, in
B; followed by B!, again a contradiction. Thus there are no such monotone

subsequences. O

Theorem 9.8 For n > k(2k — 1), the sequences which contain no mono-
tone ascending (k + 1)-subsequences and a minimum number of monotone
descending (k + 1)-subsequences are exactly the (n m]Zd k) C,fk_Q sequences de-
scribed above. The sequences which contain no monotone descending (k +

1)-subsequences and a minimum number of monotone ascending (k + 1)-

subsequences are those sequences, reversed.

Proof The derivation of extremal sequences with only ascending (k + 1)-
subsequences from those with only descending (k + 1)-subsequences is clear.
As observed above, sequences with only descending (k + 1)-subsequences
are just those divisible into at most k disjoint monotone descending subse-
quences, and minimality requires that there be exactly k such subsequences,
and that their lengths by [n/k] or [n/k]. Thus the sequences described
above are extremal (from Theorem , and it is only necessary to show
that there are no more extremal sequences.

Suppose ¢, ¢, ..., C,_1 IS an extremal sequence. Suppose that one of
the k£ monotone descending subsequences into which it is divided occupies
positions ay < a1 < --- < ag—1 (so has values ¢,y > ¢4y > -+ > c%_l),
and another occupies positions by < by < -+ < by, 1, where a9 < bg. Then

Cay < Cp, (since otherwise cqy, Cpyy Cbyy - - -, Cp,_, Would be another monotone
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descending (k + 1)-subsequence), S0 ¢,,, < €4 < Cp, for all m. Thus by >

would be a monotone

ag,—, since otherwise ¢, cq, _,, .
1 k2

Cay, gs1s -+ Ca
descending (k + 1)-subsequence; and ay, 1 > by_1, since otherwise either
Cboys Cbrs -5 Chy_ys Cag_y OF Cags Cays -y Cay qs Coyp_y would be a monotone

descending (k + 1)-subsequence (depending on the order of Cay,, and Chy_y )-

1

Thus, if we order our k£ subsequences by the position of the first element,
we have seen that the only possible overlap in positions is between the last
k — 1 of one sequence and the first £ — 1 of a later sequence. Because
n > k(2k — 1), each sequence has ¢; — 2(k — 1) > 0 central elements that
are not in the first or last k — 1; so the ordering by where the first elements
are is the same as the ordering by where the central elements are (which was
chosen previously as the ordering of the ¢;). In particular, we see that the
only overlap in positions is between the last £k — 1 of one sequence and the
first k — 1 of the very next sequence in this order.

Likewise, we may consider the possible overlap in values. If as above we
have 7 < j, a, the positions of sequence 7 and b, the positions of sequence 7,
then suppose for some p, ¢ we have c,, > ¢,. If p > k — 1, then ¢4, ¢4,

-+ Cay_y» Gy, Would be monotone descending; if ¢ < £; — k, then ¢,,, Chy, 1>

Chy, _pprs =1 Chyy would be monotone descending. Thus the only possible
overlap in values is between the first £—1 of one sequence and the last k—1 of
a later sequence, which again must be the very next sequence.

Given these restrictions on overlap of positions, the i sequence must
include the positions from s;_; +k — 1 to s; — k (with & — 1 positions to
either side). The restrictions on overlap of values imply that in these central
¢;—2(k—1) positions there must be the canonical values d;. Thus all extrema
have those fixed values that were fixed in our description of the extrema.

For 1 < i <k, let R;_; be the set of the first k — 1 values in the i*" se-
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quence, and let L; be the set of the last k — 1 values. Then the i*" sequence
contains the values R;_ i, the fixed values ¢; for s; 1 +k -1 < j <s; — F,
and L;, as in the above description of extrema. Further, the restriction on
the overlap of values implies that L; = Sy and Rp_; = Sk, and that, for
1<i<k-—1, Ry and L;y; are disjoint subsets of [s; — k + 1,s; + k — 2].
Put A; = R;_; and A} = L; ;. Similarly, the positions in our sequence of the
values in L; and R; are disjoint subsets of [s; — k + 1,s; + k — 2]; let B; be
the set of positions of the values in L;, and let B! be the set of positions of
the values in R;.

If A; and B; are indeed elements of C(k,s; + k — 2), then the sequence
is of the given form, with those A; and B;. However, if A; is not an ele-
ment of C(k,s; + k — 2), then the sequence of the values of A; = R;_; in
descending order, followed by those of A} = L;;; in descending order, has
a monotone descending subsequence of length k 4+ 1, which is such a subse-
quence in our original sequence, contradicting minimality. Likewise, if B; is
not an element of C'(k, s; + k — 2), then the sequence of the values of B; in
descending order (the positions of L;, in ascending order of value), followed
by those of B! in descending order (the positions of R;, in ascending order
of value), has a monotone descending (k + 1)-subsequence; that is, there is
a monotone descending (k + 1)-sequence of positions, the values in which
are increasing, which gives a monotone descending sequence of values in the

original sequence. O

If n < k(2k — 1), the above proof no longer works, since some of the
k subsequences have no fixed middle elements. However, for k(2k — 2) <
n < k(2k — 1), the construction still gives sequences with M(n) monotone
(k+1)-subsequences—but there can be other extrema (in which all monotone

(k + 1)-subsequences go in the same direction) as well.
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Table 9.3: Number of extremal permutations for 3 < k <4

k=3 k=4
n | Total | Both Total Both
1 1 0 1 0
2 2 0 2 0
3 6 0 6 0
4 22 0 24 0
5 86 0 118 0
6 | 306 0 668 0
7 | 882 0 4124 0
8 | 1764 0 26328 0
9 | 1764 0 165636 0
10 | 8738 0 985032 0
11 | 6892 0 5323032 0
12| 1682 0 25038288 0
13 | 14706 | 10092 | 97173648 0
14 | 4182 0 288576288 0
15| 1250 0 577152576 0
16 | 6250 | 2500 | 577152576 0
17 | 3750 0 2855608848 0
18 | 1250 0 2330017568 0
19 710429200 0
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Computation shows that, for some n and k, such other extrema do indeed
exist. In particular, this applies for £k = 3 and 12 < n < 15: for each such n
there are extrema, in which all monotone (k + 1)-subsequences go in the
same direction, that are not of the form described above. Further, if we
remove the constraint that all monotone (k+ 1)-subsequences go in the same
direction, the extremal function is as conjectured for k£ = 3 and n < 18,
and for k = 4 and n < 19 (that is, there are no sequences with fewer than
M. (n) monotone (k + 1)-subsequences). For & = 3 and 15 < n < 18,
the extrema described above are found, but when n = 16 there are some
additional extrema which contain both ascending and descending monotone
(k 4 1)-subsequences. (The first such extremum lexicographically is ‘4 3 9 2
101387651514 1211 10°.) Table!9.3 shows the number of extrema found
in each case, in the columns headed ‘Total’, and the number of those which
contain both ascending and descending monotone (k + 1)-subsequences, in
the columns headed ‘Both’.

For larger n exhaustive search could not be done, but heuristic compu-
tation, taking a random permutation and attempting to move from that to
an apparent extremum, did not find any other cases of apparent extrema
(i.e., permutations with Mj(n) monotone subsequences of length k + 1)
not matching the form described above, nor any sequences with fewer than
My, (n) monotone (k + 1)-subsequences, for n > k(2k — 1).

The method for the heuristic computation started with a random per-
mutation. Various operations were then applied to it: transposing a pair
of values in the permutation; reversing the order of a block of values in the
permutation; rotating a block of values (in consecutive positions) in the per-
mutation left or right; and the dual operation of rotating a block of positions

(of consecutive values). All possible operations that reduced the number of
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monotone (k + 1)-subsequences were considered, if there were any; if there
were none, operations that kept the number of monotone (k+1)-subsequences
the same were considered; in that case, a completely random move was occa-
sionally chosen instead (to try to avoid the problem of being stuck at a local
minimum that was not a global minimum). This process was stopped when
the permutation had no more than M (n) monotone (k + 1)-subsequences.
In computations for various n and k with n > k(2k — 1), no cases were
found with fewer than Mj(n) monotone (k + 1)-subsequences, and the only
extrema found in which not all monotone (k + 1)-subsequences went in the
same direction were with £ = 3 and n = 16. These computations were done

for k=3 and 15 < n < 30, and for £k = 4 and 28 < n < 40.
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Appendix A

Tables and source code for

Lemma 5.6

A.1 Tables

In Chapter [5, we presented a proof of an inequality (Lemma 5.6) that relied
on numerical computation of bounds in a large number of cases. Here we
present tables of the bounds computed. The source code of the program that

generated these tables is in Section |A.2.

158
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A.2 Source code

The following is the source code of the program that generated the tables in

Section/A.1 and so verifies the computational part of the proof of Lemmal/5.6!

This source code is in the ISO C language [25].

/%

/*

Verify inequality associated with quasi-random graphs
and complete minors. */

Copyright 2002 Joseph Samuel Myers.

A1l rights reserved.

Redistribution and use in source and binary forms,

with or without modification, are permitted provided that

the following conditions are met:

1. Redistributions of source code must retain the above
copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the
following disclaimer in the documentation and/or
other materials provided with the distribution.

3. The name of the author may not be used to endorse
or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR ‘¢ ‘AS IS’’ AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,

BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

ARE DISCLAIMED. 1IN NO EVENT SHALL THE AUTHOR BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
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#include <math.h>

#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>

static long double qO0; /* q_0 = 0.543689012692.. .,
real root of
qQ°3+q9q2+q-1=0. %/
static long double pO; /* p_0 =1 - q_0,
real root of
p3 -4p"2 + 6p - 2=0. */
static long double eml; /* e -1. */
static long double em2; /* e -2. */
static long double em2x4; /* 4e”-2. */

typedef struct {
long double min;
long double max;
} BOUNDS;

/* Print an error and exit. */
static void
die(const char *format, ...)
{
va_list args;
fprintf (stderr, "minors-quasi-ineq: ");
va_start(args, format);
viprintf (stderr, format, args);
va_end (args) ;
exit (EXIT_FAILURE) ;
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/* Return -r log r. */
static long double
mrlogr (long double r)
{
if (r < 0.0L || r > 1.0L)
die("mrlogr out of range");
if (r == 0.0L)
return 0.0L;
return -r * logl(r);

by

/* Return r (log r)~2. x/
static long double
rlogr2 (long double r)
{
long double 1;
if (r < 0.0L || r > 1.0L)
die("rlogr2 out of range");
if (r == 0.0L)
return 0.0L;
1 = logl(r);
return r * 1 *x 1;

}

/* Return x~(1/y~2). */
static long double
powov2 (long double x, long double y)
{
if (x < 0.0L || x >= 1.0L || y < 0.0L || y > 1.0L)
die("powov2 out of range");
if (y == 0.0L || x == 0.0L)
return 0.0L;
return powl(x, 1.0L / y / y);
+
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/* Return the bounds of -r log r. */
static BOUNDS
mlog_bounds (BOUNDS r)
{
BOUNDS ret;
long double left;
long double right;
left = mrlogr(r.min);
right = mrlogr(r.max);
ret.min = (left < right 7 left : right);
if (r.min <= eml && eml <= r.max)

ret.max = eml;
else

ret.max = (left > right 7 left : right);
return ret;

/* Return the bounds of r (log r)~2. */
static BOUNDS
log2_bounds (BOUNDS r)
{
BOUNDS ret;
long double left;
long double right;
left = rlogr2(r.min);
right = rlogr2(r.max);
ret.min = (left < right 7 left : right);
if (r.min <= em2 && em2 <= r.max)
ret.max = em2x4;

else
ret.max
return ret;

(left > right ? left : right);
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/* Return the bounds of d~"2f/d\alpha~2. x*/
static BOUNDS
d2f_bounds (BOUNDS gb, BOUNDS ab)

{
BOUNDS

qoa; /* Bounds of gq~(1/\alpha~2). */

BOUNDS qoall; /* ... * - log self. x/
BOUNDS qoal2; /* ... * log~2 self. x/
BOUNDS qola; /* Bounds of q~(1/(1-\alpha)~2). x*/

BOUNDS qolall; /* ... * - log self. x/
BOUNDS qolal2; /* ... * log~2 self. x/
BOUNDS ret;

goa.min = powov2(gb.min, ab.min);

goa.max = powov2(gb.max, ab.max);
gola.min = powov2(gb.min, 1.0L - ab.max);
gola.max = powov2(gb.max, 1.0L - ab.min);
goall = mlog_bounds(qoa);

qoal2 = log2_bounds(qoa);

golall = mlog_bounds(qola);

qolal2 = log2_bounds(qola);

ret.min = (-4.0L

+ 2.0L * goa.min + 2.0L * goall.min
+ 4.0L * qoal2.min
+ 2.0L * gola.min + 2.0L * qolall.min
+ 4.0L * golal2.min);
ret.max = (-4.0L
+ 2.0L * goa.max + 2.0L * goall.max
+ 4.0L * gqoal2.max
+ 2.0L * gola.max + 2.0L * qolall.max
+ 4.0L * golal2.max);

return ret;
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/* Print a fraction in reduced form.

The only factors to remove are powers of 2. */
static void
print_reduced_fraction(int n, int d)

{
while (n % 2 == 0 && d % 2 == 0) {
n /= 2;
d /= 2;
}
if (n == 0)
printf ("$03$");
else
printf ("$\\frac{ld}{%d}$", n, d);
}

/* Attempt to prove second derivative always negative
for given q. */
static void
prove_d2f_neg (BOUNDS gb)
{
long double amin, astep;
amin = 0.0L;
astep = 0.5L;
while (amin < 0.5L) {
BOUNDS ab;
BOUNDS tb;
ab.min = amin;
ab.max = amin + astep;
tb = d2f_bounds(gb, ab);
if (tb.max < 0.0L) {
printf ("$/Lg$ & $%Lg$ & ",
gb.min, gb.max);
print_reduced_fraction(ab.min / astep, 1.0L / astep);
printf(" & ");
print_reduced_fraction(ab.max / astep, 1.0L / astep);
printf (" & $%.6Lf$ & $%.6Lf$ \\\\\n",
tb.min, tb.max);
amin += astep;
} else {
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astep /= 2;
if (astep < 1.0L / 4096.0L)
break;
b
+
if (amin >= 0.5L) {
printf ("Succeeded in proving second derivative "
"negative for all alpha,\n"
"%Lf <= q <= %Lf\n", gb.min, gb.max);
} else {
die("FAILED to prove second derivative "
"negative for all alpha,\n"
"YWL <= q <= }Lf", gb.min, gb.max);

/* Attempt to prove f always positive for given q. */
static void

prove_f_pos (BOUNDS gb)

{

/* Divide [ 0, 1/2 ] into some number of parts. Bound
second derivative on each part. We know first
derivative is zero at centre; bound it on each part.
We know f is zero at alpha = 0; bound it at end of
each part. Want: f > O in centre. Use this from say
q = 0.4 up, but not too far up (too near q0). */

int parts = 2;

BOUNDS d2b[32];

BOUNDS d1b[32]; /* 1st derivative on a region. */

BOUNDS dibleft[32]; /* 1st derivative to

the left of a region. x/

BOUNDS fb[32], fbright[32];

while (parts <= 32) {

int 1i;

long double d = 0.5L / (long double)parts;
BOUNDS rb, 1b;

for (i = 0; i < parts; i++) {

BOUNDS ab;
ab.min = d * i;
ab.max = d *x (1 + 1);
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d2b[i] = d2f_bounds(gb, ab);

}
rb.min = 0.0L;
rb.max = 0.0L;

for (i = parts - 1; i >= 0; i—-) {

dibleft[i] .min = rb.min - d * d2b[i] .max;
dibleft[i] .max = rb.max - d * d2b[i] .min;
dib[i] .min = (rb.min < dibleft[i] .min

? rb.min

: dibleft[i] .min);
dib[i] .max = (rb.max > dilbleft[i] .max

? rb.max

: dibleft[i] .max);
rb = dibleft[il;

}
1b.min = 0.0L;
1b.max = 0.0L;

for (i = 0; i < parts; i++) {
fbright[i] .min = 1lb.min + d * dib[i] .min;
fbright[i] .max = lb.max + d * dib[i] .max;
fbl[i] .min = (1b.min < fbright[i] .min
? 1b.min
: fbright[i] .min);
fbli] .max = (1b.max > fbright[i] .max
? 1b.max
: fbright[i] .max);
if (fbright[i].min <= 0.0L)
break;
1b = fbright[i];
}
if (i == parts)
break;
parts *= 2;
+
if (parts <= 32) {
int i;
for (i = 0; i < parts; i++) {
printf ("$%Lg$ & $%Lg$ "
"& $\\frac{/d{%d}$ & $\\frac{%d{%d}$ "
"& $%.6Lf$ & $%.6Lf$ & $%.6Lf$ & $%.6Lf$ "
"& $%.6Lf$ & $%.6Lf$ \\\\\n",
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gb.min, gb.max, i, 2 * parts, i + 1, 2 * parts,
d2b[i] .min, d2bl[i] .max,
dibleft[i] .min, dibleft[i].max,
foright[i] .min, fbright[i] .max);
+
printf ("Proved f always positive for "
"YLf <= q <= YLf, %d steps.\n",
gb.min, gb.max, parts);
} else {
die("FAILED to prove f always positive for "
"ALE <= q <= JLf.",
gb.min, gb.max);

/* Attempt to prove f of a certain shape for given q. */
static void

prove_f_shape (BOUNDS gb)

{

/* Divide [ 0, 1/2 ] into some number of parts. Bound
second derivative on each part. We know first
derivative is zero at centre; bound it on each part.
Want: first a region with second derivative negative,
then the first derivative negative until the centre
(zero at the centre - so then allow a region with
second derivative positive). */

int parts = 2;

BOUNDS d2b[32];

BOUNDS d1b[32]; /* 1st derivative on a region. */

BOUNDS di1bleft[32]; /* 1st derivative to

the left of a region. x/
while (parts <= 32) {

int 1i;
long double d = 0.5L / (long double)parts;
BOUNDS rb;
for (1 = 0; i < parts; i++) {
BOUNDS ab;

ab.min = d * i;
ab.max = d * (i + 1);
d2b[i] d2f_bounds(gb, ab);
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rb.min 0.0L;
rb.max 0.0L;
for (i = parts - 1; i >= 0; i—-) {
dibleft[i] .min = rb.min - d * d2b[i] .max;
dibleft[i] .max = rb.max - d * d2b[i] .min;
dib[i] .min = (rb.min < dilbleft[i] .min
? rb.min
: dibleft[i] .min);
dib[i] .max = (rb.max > dibleftl[i] .max
? rb.max
: dibleft[i] .max);
rb = dibleft[i];
+
for (i = 0; i < parts; i++) {
if (d2b[i] .max >= 0)
break;

}
for (; i < parts; i++) {
if (di1b[i] .max >= 0)
break;
}
for (; i < parts; i++) {
if (d2b[i] .min <= 0)
break;
}
if (i == parts)
break;
parts *x= 2;
+
if (parts <= 32) {
int i;
for (i = 0; 1 < parts; i++) {
printf ("$%Lg$ & $%Lg$ "

"& $\\frac{hrd}{%d}$ & $\\frac{kd}{ld}$ "
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"& $%.6Lf$ & $%.6Lf$ & $%.6LEf$ & $%.6LfS \\\\\n",

gb.min, gb.max, i, 2 * parts, i + 1, 2 *x parts,

d2b[i] .min, d2b[i] .max,
dibleft[i] .min, dibleft[i] .max);
}
printf ("Proved f correct shape for "
"%Lf <= q <= %Lf, %d steps.\n",
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gb.min, gb.max, parts);
} else {
die("FAILED to prove f correct shape for "
"ILE <= q <= %Lf.",
gb.min, gb.max);

int
main (void)
{
/* Compute q0 by cubic formula. */
q0 = (cbrtl(3.0L * sqrtl(33.0L) + 17.0L)
- cbrtl(3.0L * sqrtl(33.0L) - 17.0L)

- 1.0L) / 3.0L;
pO = 1.0L - qO0;
eml = expl(-1.0L);
em2 = expl(-2.0L);

em2x4 = 4 *x em2;

prove_d2f_neg((BOUNDS) { 0.0L, 0.4L });
prove_f_pos((BOUNDS) { 0.4L, 0.48L });
prove_f_shape ((BOUNDS) { 0.48L, 0.5L 1});
prove_f_shape ((BOUNDS) { 0.5L, 0.55L 1});
exit (EXIT_SUCCESS) ;
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