Ab initio Molecular Dynamics Studies of Anomalous Proton Transport Mechanisms in Various Hydrogen-bonded Media

> Mark E. Tuckerman Dept. of Chemistry and Courant Institute of Mathematical Sciences New York University, 100 Washington Sq. East New York, NY 10003

Talk Outline

Proton transport in ammonium perchlorate crystal

Proton transport in water and acidic solutions

Proton transport in liquid methanol

Proton transport in methanol/water mixtures

SEE POSTER:

Proton transfer in water and at the liquid-vapor interface: a combined ab initio and polarizable multi-state EVB molecular dynamics approach

G. Brancato, H. -S. Lee and MET

Ab initio molecular dynamics

R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985). Given a system of N nuclei with positions $\mathbf{R}_1, ..., \mathbf{R}_N \equiv \mathbf{R}$

Classical evolution:

 $M_I \ddot{\mathbf{R}}_I = \mathbf{F}_I(\mathbf{R})$

 $= -\langle \Psi_0(\mathbf{R}) | \nabla_I H_{\text{elec}}(\mathbf{R}) | \Psi_0(\mathbf{R}) \rangle - \nabla_I U(\mathbf{R})$

 $\frac{\text{Kohn-Sham Density Functional Theory}}{E[\{\psi_i\}, \{\mathbf{R}\}]} = -\frac{1}{2} \sum_i \langle \psi_i | \nabla^2 | \psi_i \rangle + \frac{1}{2} \int d\mathbf{r} \, d\mathbf{r}' \, \frac{n(\mathbf{r}) n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \\ + E_{\text{xc}}[n] + \sum_{I=1}^N \int d\mathbf{r} \, n(\mathbf{r}) V_{\text{ext}}(|\mathbf{r} - \mathbf{R}_I|) + U(\mathbf{R}) \\ n(\mathbf{r}) = \sum_i |\psi_i(\mathbf{r})|^2 \qquad \langle \psi_i | \psi_j \rangle = \delta_{ij}$

Car-Parrinello dynamics:

$$\mu |\ddot{\psi}_i\rangle = -\frac{\partial E}{\partial \langle \psi_i |} + \sum_{i,j} \Lambda_{ij} |\psi_j\rangle$$
$$M_I \ddot{\mathbf{R}}_I = -\nabla_I E$$

Ammonium perchlorate crystal

- Thermally labile materials used as an oxidizer in rocket fuels.
- Undergoes an orthorhombic -> cubic structural phase transition at *T* = 513 K.
- In the cubic phase, experiments find proton conductivity increases by factor of 5 upon doping with neutral ammonia.
- Thought that rotational dynamics of the ions plays a role in the conduction mechanism.

Pure Cubic AP Crystal

Cubic AP crystal + ammonia

L. Rosso and MET, Solid State Ionics 161, 219 (2003)

Simulation specifics

L. Rosso and MET, Solid State Ionics 161, 219 (2003)

- Temperature: Orthorhombic 300 K, Cubic 530 K
- Cubic: 15.26 x 15.26 x 7.63 Å
- Ortho: 9.2 x 11.6 x 7.63 Å
- Simulation Lengths: Pure: 15 ps, Doped 30 ps
- BLYP functional
- Martins-Troullier pseudopotentials

Calculation of infrared spectrum

Infrared spectrum from autocorrelation function of total dipole moment in the harmonic approximation:

$$\alpha(\omega) = \frac{4\pi\beta\omega^2}{3\hbar n(\omega)cV\varepsilon_0} \int d\omega \, e^{-i\omega t} \left\langle \mathbf{M}(0)\cdot\mathbf{M}(t)\right\rangle_{cl}$$
$$= \frac{4\pi\beta}{3\hbar n(\omega)cV\varepsilon_0} \int d\omega \, e^{-i\omega t} \left\langle \dot{\mathbf{M}}(0)\cdot\dot{\mathbf{M}}(t)\right\rangle_{cl}$$

Total electronic position operator: $\mathbf{r} = \sum_{i} \mathbf{r}_{i}$

Electronic contribution: [R. Resta, Phys. Rev. Lett. 80, 1800 (1998)]

$$M_{\alpha}^{(\text{elec})} = \frac{eL}{2\pi} \operatorname{Im} \ln \det \mathbf{R}_{\alpha} \overline{} e^{-2\pi i r_{\alpha}/L} \Psi_{0}(\tau)$$

$$R_{\alpha,ij} = \left\langle \psi_i \right| e^{-2\pi i r_a / L} \left| \psi_j \right\rangle$$

(Ъ)

(a)

NH₄+ D (doped)/D(pure)=4.9 σ(doped)/σ(pure)=4.5 H. Wise, JPC **71**, 2843 (1967)

 CIO_4^-

Rotational mean-square displacements

Structures of the excess proton in water

Hydronium ion:

The Grotthuss mechanism in water

MET, *et al*, JPC, **99**, 5749 (1995); JCP **103**, 150 (1995)
D. Marx, MET, M. Parrinello, *Nature* **397**, 601 (1999).
N. Agmon, *Chem. Phys. Lett.* **244**, 456 (1995)
T. J. F. Day, *et al. J. Am. Chem. Soc.* **122**, 12027 (2000)

Solvent coordinate view:

P. M. Kiefer, J. T. Hynes *J. Phys. Chem. A* **108**, 11793 (2004)

The Grotthuss mechanism in water

Second solvation shell H-bond breaking followed by formation of intermediate Zundel complex:

The Grotthuss mechanism in water

Transfer of proton resulting in ``diffusion'' of solvation structure:

Decomposition of the dipole moment

R. Iftimie and MET, J. Chem. Phys. (in press)

Dipole moment:

$$M_{\alpha}^{(\text{elec})} = \frac{eL}{2\pi} \text{Im ln det R}_{\alpha}$$

If **R** is diagonal with eigenvalues **r**:

$$\mathbf{M} = \sum_{i} \boldsymbol{\mu}_{i} = \sum_{m} \boldsymbol{\mu}_{m}$$

where

$$\boldsymbol{\mu}_m = \sum_{j \in m} \left[Z_j \mathbf{R}_j - \sum_{k \in j} \mathbf{r}_k \right]$$

Correlation function:

$$C(t) = \left\langle \dot{\mathbf{M}}(0) \cdot \dot{\mathbf{M}}(t) \right\rangle_{cl} = \sum_{m} \left\langle \dot{\mathbf{\mu}}_{m}(0) \cdot \dot{\mathbf{M}}(t) \right\rangle_{cl}$$

Unitary (Gauge) Invariance and localized orbitals

Total energy invariant under static unitary transformations:

$$\tilde{\psi}_i(\mathbf{r},t) = \sum_j U_{ij} \psi_j(\mathbf{r},t) = \sum_j (e^{i\mathbf{B}})_{ij} \psi_j(\mathbf{r},t)$$

If we only care about distance from center at the potential minimum, then a point $Z=R_{min} e^{i\theta}$ is acceptable for any choice of θ

Decomposition of the dipole moment

Dipole moment determined by the matrix

$$R_{\alpha,ij} = \left\langle \psi_i \right| e^{2\pi i r_\alpha / L} \left| \psi_j \right\rangle$$

Different components do not commute with each other

$$\begin{bmatrix} \mathbf{R}_{\alpha}, \mathbf{R}_{\beta} \end{bmatrix} \neq 0 \qquad \text{if} \quad \alpha \neq \beta$$

Cannot simulataneously diagonalize all three components. Define

$$\Omega[\psi] = \sum_{i} \left[\left| R_{x,ii} \right|^{2} + \left| R_{y,ii} \right|^{2} + \left| R_{y,ii} \right|^{2} \right]$$

Choose *U* such that $\Omega[\tilde{\psi}]$ is maximal. The orbitals that result are known as Wannier functions. Because they maximize the diagonal elements of the translationally invariant position operator, they spatial spread Is minimal.

DFT = BLYP, Cutoff = 80 Ry, System = 64 molecules + 1 HCl or 1 H_2F_2 time = 20 ps

R. Iftimie and MET, J. Chem. Phys. (in press); *ibid*, PNAS (submitted); *ibid*, JACS (in prep)

Expt. (3.6 M HBr)
Expt. (8.8 M HBr)
Theor. (0.9 M HCl)

– – **–** Theor. (0.9 M H_2F_2)

Theor. (0.9 M H_2F_2) – FHF⁻ spectrum

Ab Initio Path Integrals

M. E. Tuckerman, et al, JCP 104, 5579 (1996).

Quantum canonical partition function

$$Q = \operatorname{Tr}\left(e^{-\beta H}\right)$$

= $\oint \mathcal{D}\mathbf{R}_{1}\cdots\mathcal{D}\mathbf{R}_{N}\exp\left\{-\int_{0}^{\beta}d\tau\left[\sum_{I=1}^{N}\frac{1}{2}M_{I}\dot{\mathbf{R}}_{I}^{2}(\tau)+E_{0}(\{\mathbf{R}_{I}(\tau)\})\right]\right\}$

Limit of discretized integral

$$Q = \lim_{P \to \infty} \left[\prod_{I=1}^{N} \mathcal{N} \int d\mathbf{R}_{I}^{(1)} \cdots d\mathbf{R}_{I}^{(P)} \int d\mathbf{P}_{I}^{(1)} \cdots d\mathbf{P}_{I}^{(P)} \right] \\ \times \exp \left\{ -\beta \sum_{s=1}^{P} \left[\sum_{I=1}^{N} \left(\frac{\left(\mathbf{P}_{I}^{(s)}\right)^{2}}{2M_{I}'} + \frac{1}{2\beta^{2}} M_{I} P(\mathbf{R}_{I}^{(s)} - \mathbf{R}_{I}^{(s+1)})^{2} \right) + \frac{1}{P} E_{0}(\{\mathbf{R}_{I}\}^{(s)}) \right] \right\}$$

Exact when:

$$P \rightarrow \infty$$

Simulation specifics

Marx, MET, Hutter, Parrinello, Nature 397, 601 (1999).

- **Temperature:** T = 300 K
- **Box:** L = 9.87 Å
- System: 31 $H_2O + 1 H_3O^+$
- **Path integral discretization:** P = 8, Classical: P=1
- Simulation Lengths:

Quantum:322,000 configurations (40 ps)Classical (P=1):345,000 configurations (60 ps)

Coordinates that follow the proton

Project out the Defect Site

Probability distribution functions

Proton Rattling: Free Energy Profile

For analysis: 1D proton transfer coordinate ¹

Proton rattling in $H_5O_2^+$ complex: $H_2O \stackrel{\leftrightarrow}{\cdots} H^* \stackrel{\leftrightarrow}{\cdots} OH_2$

Quantum delocalization of structural defect

D. Marx, MET, J. Hutter and M. Parrinello Nature 397, 601 (1999)

Proposed Structural Diffusion Mechanism in MeOH

H. -C. Chang, et al, J. Phys. Chem. A 103, 2941 (1999).

Bond Cutting

Use of monovalent Carbon pseudopotential

U. Röthlisberger, private comm.

Y. Zhang, T. Lee, W. Yang JCP 110, 46 (1999).

Results on structure of liquid methanol

DFT Level: **BLYP** Force Field: AMBER95 CO bond cutting: Pseudobond System size: 32 molecules Sim. Length: 10 ps

Electron-methyl H pseudopotential:

$$V_{e-M}(r) = Ae^{-\gamma r}$$

A=18.5763 kcal/mol

γ = 0.5292 Å

J. A. Morrone and MET, Chem. Phys. Lett. 370, 406 (2003)

A. Adya, et al. J. Chem. Phys. 112, 4231 (2000)

H-bond chain length statistics

Simulation specifics

J. A. Morrone and MET, *J. Chem. Phys.* **117**, 4403 (2002). J. A. Morrone and MET, *Chem. Phys. Lett.* **370**, 406 (2003).

- **Temperature:** T = 300 K
- **Box:** L = 12.93 Å
- System: 32 MeOH and 32 MeOH + 1 H⁺
- All H are D
- Simulation Lengths: 60 ps
- BLYP treatment of OH group
- AMBER treatment of Me
- Monovalent pseudopotential in "cut" bond
- e-M pseudopotential $V(r) = Ae^{-\gamma r}$

Geometry of the protonated methanol dimer

The Hazard Plot

Suppose a system which can undergo a particular process has survived up to time t without undergoing the process. Let h(t)dt be the probability that the process will occur between t and t + dt (called the hazard). Define the cumulative hazard:

$$H(t) = \int_0^t dt' h(t')$$

Plot H(t) vs. transition time.

If process is random, then at long time, $h(t) = \lambda$, $H(t) = \lambda t$.

E. Helfand, J. Chem. Phys. 69, 1010 (1978).

Proton transfer event statistics

Defect H-bond length distributions

Methanol-water mixtures

Competition between chain formation of methanol and tetrahedral network of water

Recent neutron diffraction experiments suggest that between X=0.27 and x=0.54, molecular segregation occurs, leading to separate "percolating networks".

S. Dixit, et al. Nature 416, 829 (2002); L. Dougan, et al. J. Chem. Phys. 121, 6456 (2004)

Water cluster sizes mostly less than 10 at x=0.27 and less than 20 for x=0.54.

Suppression of methanol tendency to form hydrogen-bonded chains as *x* increases.

From a classical MD run using 1024 MeOH + 1024 H_2O (x=0.5)

Simulation specifics

K. E. Haslinger, J. A. Morrone and MET (in preparation)

- **Temperature:** T = 300 K
- **Box:** L = 11.46 Å (x=0.5), 10.69 Å (x=0.25)
- System: 16 MeOH and 16 H₂O (+ 1 H⁺): x=0.5
- System: 8 MeOH and 24 H_2O : x=0.25
- All H are D
- Simulation Lengths: 100 ps
- Vanderbilt Ultrasoft Pseudopotentials

Water-water radial distribution functions

Methanol-methanol radial distribution function

From ab initio MD run (x=0.5)

A simple kinetic model

Let A be the most active hydrogen bond. Let B be an adjacent hydrogen bond. Let C be a more "distant" situation.

$$A \underset{k_{-1}}{\overset{k_{1}}{\underset{k_{-1}}{\longrightarrow}}} B$$
$$B \underset{k_{2}}{\longrightarrow} C$$

$$\frac{d[A]}{dt} = -k_1[A] + k_{-1}[B]$$
$$\frac{d[B]}{dt} = -(k_2 + k_{-1})[B] + k_1[A]$$

Solution of the kinetic model

$$[A](t) = \frac{1}{2\lambda} \Big[(\lambda - k_1 + K) e^{-(k_1 + K - \lambda)t/2} + (\lambda + k_1 - K) e^{-(k_1 + K + \lambda)t/2} \Big]$$

$$= [A]_{slow}(t) + [A]_{fast}(t)$$

$$[B](t) = \frac{k_1}{\lambda} \Big[e^{-(k_1 + K - \lambda)t/2} - e^{-(k_1 + K + \lambda)t/2} \Big]$$

$$= [B]_{slow}(t) + [B]_{fast}(t)$$

$$\lambda = \sqrt{(k_1 - K)^2 + 4k_1k_{-1}}$$

$$K = k_2 + k_{-1}$$

Using the model with the MD data

Correlation functions for a proton in a 50:50 methanol/water mixture

From a LLSQ fit:

 $k_1 = 20.9 \text{ ps}^{-1}$ $k_{-1} = 22.6 \text{ ps}^{-1}$ $k_2 = 0.8 \text{ ps}^{-1}$

Correlation functions for hydroxide mobility in water

Calculated approximate branching ratios

Reaction	Fraction
$H_3O^+ + H_2O \rightarrow H_2O + H_3O^+$	47.0%
$H_3O^+ + MeOH \rightarrow H_2O + MeOH_2^+$	25.0%
$MeOH_2^+ + H_2O \rightarrow MeOH + H_3O^+$	25.0%
$MeOH_2^+ + MeOH \rightarrow MeOH + MeOH_2^+$	3.0%

Acknowledgments

Students past and present

- Zhongwei Zhu
- Yi Liu
- Joseph A. Morrone
- Kiryn E. Haslinger
- Lula Rosso

Postdocs

- Giuseppe Brancato
- Radu Iftimie
- Hee-Seung Lee
- Dawn A. Yarne

Collaborators

- Glenn Martyna
- Dominik Marx
- Michele Parrinello

<u>Funding</u>

- NSF CAREER
- NYU Whitehead Award
- NSF Chemistry, ITR
- Camille and Henry Dreyfus Foundation